[多项式除以单项式例题]1.9 多项式除以单项式
【jiaoan.jxxyjl.com--七年级数学教案】
教学目的:
使学生熟练地掌握多项式除以单项式的法则,并能准确地进行运算.
教学重点:
多项式除以单项式的法则是本节的重点.
教学过程:
一、复习提问
1.计算并回答问题:
(1)4a3b4c÷2a2b2c;(2)(- a2b2c)÷3ab2.
(3)以上的计算是什么运算?能否叙述这种运算的法则?
2.计算并回答问题:
(1)3x(x2- x+1);(2)-4a·( a2-a+2).
(3)以上的计算是什么运算?能否叙述这种运算的法则?
3.请同学利用2、3、6其间的数量关系,写出仅含以上三个数的等式.
说明:希望学生能写出
2×3=6,(2的3倍是6)
3×2=6,(3的2倍是6)
6÷2=3,(6是2的3倍)
6÷3=2.(6是3的2倍)
然后向大家指明,以上四个式子所表示的三个数间的关系是相同的,只是表示的角度不同,让学生理解被除式、除式与商式间的关系.
二、新课
1.新课引入.
对照整式乘法的学习顺序,下面我们应该研究整式除法的什么内容?在学生思考的基础上,点明本节的主题,并板书标题.
2.法则的推导.
引例:(8x3-12x2+4x)÷4x=(?)
分析:
利用除法是乘法的逆运算的规定,我们可将上式化为
4x · ( ? ) =8x3-12x2+4x.
原乘法运算: 乘式 乘式 积
(现除法运算):(除式) (待求的商式) (被除式)
然后充分利用单项式乘多项式的运算法则,引导学生对“待求的商式”做大胆的猜测:大体上可以从结构(应是单项式还是多项式)、项数、各项的符号能否确定、各具体的项能否“猜”出几方面去思考.根据课上学生领悟的情况,考虑是否由学生完成引例的解答.
解:(8x3-12x2+4x)÷4x
=8x3÷4x-12x2÷4x+4x÷4x
=2x2-3x+4x.
思考题:(8x3-12x2+4x)÷(-4x)=?
以上的思想,可以概括为“法则”:
(am+mb+cm)÷m=am÷m+bc÷m+cm÷m
法则的语言表达是:
多项式除以单项式,先把这个多项式的每
一项除以这个单项式,再把所得的商相加.
3.巩固法则.
例1 计算:
(1)(28a3-14a2+7a)÷7a;
(2)(36x4y3-24x3y2+3x2y2)÷(-6x2y).
小结:
(1)当除式的系数为负数时,商式的各项符号与被除多项式各项的符号相反,要特别注意;
(2)多项式除以单项式是利用相应法则,转化为单项式除以单项式而求得结果的.
(3)在学习、巩固新的法则阶段,应尽量要求学生写出表现法则的那一步.
本节是学习多项式与单项式的除法,因此对于单项式除以单项式的计算则可以从简.
练习
1.计算:
(1)(6xy+5x)÷x; (2)(15x2y-10xy2)÷5xy;
(3)(8a2b-4ab2)÷4ab; (4)(4c2d+c3d3)÷(-2c2d).
例2 化简[(2x+y)2-y(y+4x)-8x]÷2x.
解:[(2x+y)2-y(y+4x)-8x]÷2x
=(4x2+4xy+y2-y2-4xy-8x)÷2x
=(4x2-8x)÷2x=2x-4.
三、小结
1.多项式除以单项式的法则写成下面的形式是否正确?12
(a+b+c)÷m=a÷m+b÷m+c÷m.
答:上面的等式也反映出多项式除以单项式的基本方法(两个要点):
(1)多项式的每一项除以单项式;
(2)所得的商相加.
所以它也可以是多项式除以单项式法则的数字表示形成.
学习了负指数之后,我们可以理解a、b、c是否能被m整除不是关键问题.
2.多项式除以单项式的商在项数与各项的符号与什么式子有联系?有何联系?
教后记:12
本文来源:https://jiaoan.jxxyjl.com/qinianjishuxuejiaoan/48674.html
-
平行线的性质|平行线的性质详细阅读
教学建议 1、教材分析 (1)知识结构 : (2)重点、难点分析 本节内容的重点是.教材上明确给出了“两直线平行,同位角相等”推出“两直线平行,内错角相等”的证明过程.而且直接运用了“∵”、“∴”的推理形式,为学生创设了一个学习推理的环境,对逻辑推理能力是一个渗透.因此,这一节课有着承上启下的作用...
-
【平行线的判定】平行线的判定详细阅读
教学建议 1、教材分析 (1)知识结构: 由平行线的画法,引出公理(同位角相等,两直线平行).由公理推出:内错角相等,两直线平行.同旁内角互补,两条直线平行,这两个定理. (2)重点、难点分析 : 本节的重点是:公理及两个判定定理.一般的定义与第一个判定定理是等价的.都可以做判定的方法.但平行线的定...
-
【一元一次方程的解法教案】一元一次方程和它的解法详细阅读
教学目的:掌握移项法则,并能利用移项法则准确 迅速地解一元一次方程教学重点:移项法则教学难点 :通过引例归纳移项法则教学过程 :一、复习提问 1、什么叫等式的性质? 2、什么叫方程? 二、新课:导语 :从这节课开始学习和研究,在...
-
[简易方程]简易方程详细阅读
教学目标 1.会解,并能用解简单的应用题; 2.通过代数法解进一步培养学生的运算能力,发展学生的应用意识; 3.通过解决问题的实践,激发学生的学习兴趣,培养学生的钻研精神。教学建议 一、教学重点、难点 重点:的解法; 难点:根据实际问题中的数量关系正确地列出方程并求解。 二、重点、难点分析 解的基本...
-
[二元一次方程组]二元一次方程组详细阅读
教学目的1、使学生二元一次方程、的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。2、使学生了解二元一次方程、的解的含义,会检验一对数是不是它们的解。3、通过和一元一次方程的比较,加强学生的类比的思想方法。通过“引例”的学习,使学生认识数学是根据实际的需要而产生发展的观点。教学...
-
简易方程|简易方程详细阅读
教学目标 1.会解,并能用解简单的应用题; 2.通过代数法解进一步培养学生的运算能力,发展学生的应用意识; 3.通过解决问题的实践,激发学生的学习兴趣,培养学生的钻研精神。教学建议 一、教学重点、难点 重点:的解法; 难点:根据实际问题中的数量关系正确地列出方程并求解。 二、重点、难点分析 解的基...
-
【一元一次方程的解法教案】一元一次方程和它的解法详细阅读
一、素质教育目标 (一)知识教学点 1.要求学生学会用移项解方程的方法. 2.使学生掌握移项变号的基本原则. (二)能力训练点 由移项变形方法的教学,培养学生由算术解法过渡到代数解法的解方程的基本能力. (三)德育渗透点 用代数方法解方程中,渗透了数学中的化未知为已知的重要数学思想. (四)美育渗透...
-
《走一步|《走一步,再走一步》教案设计详细阅读
课题: 邓稼先教学目的: 1、 掌握本文的生字新词,理解文中两个古诗文小段。 2、 灵活运用速读、默读、朗读等阅读方式阅读课文。 3、 学习邓稼先将个人生命奉献给祖国国防事业的崇高情怀。 教学重点: 用速读、默读、朗读等阅读方式阅读课文。 教学难点 : 1、 第一部分写百年屈辱史的用意; 2、 把邓...
-
同类项的定义|同类项详细阅读
教学设计示例 一、素质教育目标 (一)知识教学点 1.掌握:什么样的项是. 2.了解:了解可以合并. 3.应用:会合并,会利用合并的知识解决一些实际问题. (二)能力训练点 通过例题的讲解与训练,使学生熟练进行的合并. (三)德育渗透点 通过由数的加减推广到的合并,可以培养学生由特殊到一般的思维规律...
-
【一元一次方程的应用】一元一次方程的应用详细阅读
5 3 用方程解决问题(2)--打折销售 学 习目标:1、进一步经历运用方程解决实际问题的过程。2、提高学生找等量关系列方程的能力。3、培养学生的抽象、概括、分析和解决问题的能力。4、学会用数学的眼光去看待、分析现实生活中的情景。重点:1 如何从实际问题中寻找等量关系...