苏教版七年级上册数学余角补角对顶角_七年级上册《余角、补角、对顶角》导学设计苏教版

七年级数学教案 2017-02-07 网络整理 晴天

【jiaoan.jxxyjl.com--七年级数学教案】

【学习目标】1、知识与技能:在具体情境中了解互余、互补的概念,熟练掌握余角、补角的性质。2、过程与方法:进一步提高学生的抽象概括能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想。3、情感态度与价值观:初步体会观察、归纳、推理对获取数学知识的重要作用,体会图形语言和符号语言的相互转化。
【教学重点、难点】1、余角、补角的性质;2、余角、补角的性质的应用。
学习过程:
一、课前预习
1.看图解答:
(1)图中以oa为一边的角有几个?请表示出来。
 
 
(2)你能写出哪些有关角的和与差的关系式?
 
 
2.已知3组角:
     

  
 
 
 
 

  a 组               b组            c组
(1)对a组中的每一个角,在b组中找出它的补角,并用线连接;
(2)b组中有哪些角的余角在c组中?分别找出这些角,并用线连接。
 
二、课堂学习
(一)情境创设:
观察与思考(三角板演示):
找出∠α, ∠β之间的关系。(学生可动手操作)
(二)师生重点、难点研讨
1.概念:
如果两个角的和是__________,这两个角叫做互为余角,简称互余。其中的一个角是另一个角的余角。
    如果两个角的和是__________,这两个角叫做互为补角,简称互补。其中一个角叫做另一个角的补角。
2.填表:
∠α的度数
50°
 
 
n°(00<n<900)
∠α的余角
 
45°
 
 
∠α的补角
 
 
120°
 
思考:
1、为什么要强调00<n<900 ?
2、若∠a的补角是它的余角的4倍,你能求出∠a的度数吗?
3.同一个锐角的补角与它的余角之间有怎样的数量关系?
答:________________________________________________
(三)探索余角补角的性质                 
1.例:如果∠1与∠2 互余,  ∠1与∠3互余,那么∠2与∠3 相等吗?为什么?
得出结论:同角的余角____________.
变式:∠1和∠2互余,∠3和∠4互余,若∠1=∠3,那么∠2与∠4相等吗?为什么?
得出结论:等角的余角____________.
2.猜想:同角的补角____________.等角的补角____________.
推理过程:
(1)如果∠1与∠2互补,∠1与∠3互补,那么∠2与∠3相等吗?说明你的理由。
得出结论:同角的补角____________.
(2)∠1和∠2互补,∠3和∠4互补,若∠1=∠3,那么∠2与∠4相等吗?说明你的理由。
得出结论:等角的补角____________.
(四)尝试运用
3.如图,o是直线ab上的一点,oc平分∠aob,∠doe=90o,
则(1)∠2=∠(     ),∠1=∠(     )
  (2)图中,互为余角的角共有哪几对?
  (3)图中,∠dob的补角是                。
(4)反向延长0e到f,∠cof与∠ bod的大小关系怎样?12
三、课堂检测
1.如图,∠a+∠b=90,∠bcd+∠b=90,∠a与∠bcd的大小关系是______,
理由:_____________________.
2.如图,∠1+∠2=180,∠1+∠3=180,∠2与∠3的大小关系是_________,
理由:_____________________.
 
 
 
 
 
 
第1题                             第2题             
3.已知∠b是它补角的3倍,求∠b的度数。
 
4.如图,直线cd经过点o,且oc平分∠aob。∠aod与∠bod有怎样的大小关系?说明你的理由。
 
 
 
 
 
 
四、课后作业
1.判断下列语句是否正确:
a、两个互补的角中必有一个是钝角(     )
b、一个角的补角一定比这个角大(     )
c、互补的两个角中至少有一个角大于或等于直角(     )
d、两个互余的角都是锐角(      )
 
2.填空:
(1)一个角是36 °,则它的余角是_______,它的补角是_______。
(2),则它的余角等于________;的补角是,则=_______。
3.一个角的补角的余角等于这个角的,求这个角的度数。
 
 

4.如图,∠aoc=900,∠bod=900,则∠1与∠3的
关系是________,其理由是__________________.
 
 
 
 
 
 
 
5.如图,∠1+∠2=180°, ∠3+∠4=180°,若∠1=∠3,
则∠2与∠4的关系是_______,其理由是_________________.
 

12

本文来源:https://jiaoan.jxxyjl.com/qinianjishuxuejiaoan/48745.html

  • 平行线的性质|平行线的性质

    教学建议 1、教材分析 (1)知识结构 : (2)重点、难点分析 本节内容的重点是.教材上明确给出了“两直线平行,同位角相等”推出“两直线平行,内错角相等”的证明过程.而且直接运用了“∵”、“∴”的推理形式,为学生创设了一个学习推理的环境,对逻辑推理能力是一个渗透.因此,这一节课有着承上启下的作用...

    发布于:2026-01-18

    详细阅读
  • 【平行线的判定】平行线的判定

    教学建议 1、教材分析 (1)知识结构: 由平行线的画法,引出公理(同位角相等,两直线平行).由公理推出:内错角相等,两直线平行.同旁内角互补,两条直线平行,这两个定理. (2)重点、难点分析 : 本节的重点是:公理及两个判定定理.一般的定义与第一个判定定理是等价的.都可以做判定的方法.但平行线的定...

    发布于:2026-01-18

    详细阅读
  • 【一元一次方程的解法教案】一元一次方程和它的解法

    教学目的:掌握移项法则,并能利用移项法则准确 迅速地解一元一次方程教学重点:移项法则教学难点 :通过引例归纳移项法则教学过程 :一、复习提问 1、什么叫等式的性质? 2、什么叫方程? 二、新课:导语 :从这节课开始学习和研究,在...

    发布于:2026-01-18

    详细阅读
  • [简易方程]简易方程

    教学目标 1.会解,并能用解简单的应用题; 2.通过代数法解进一步培养学生的运算能力,发展学生的应用意识; 3.通过解决问题的实践,激发学生的学习兴趣,培养学生的钻研精神。教学建议 一、教学重点、难点 重点:的解法; 难点:根据实际问题中的数量关系正确地列出方程并求解。 二、重点、难点分析 解的基本...

    发布于:2026-01-18

    详细阅读
  • [二元一次方程组]二元一次方程组

    教学目的1、使学生二元一次方程、的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。2、使学生了解二元一次方程、的解的含义,会检验一对数是不是它们的解。3、通过和一元一次方程的比较,加强学生的类比的思想方法。通过“引例”的学习,使学生认识数学是根据实际的需要而产生发展的观点。教学...

    发布于:2026-01-18

    详细阅读
  • 简易方程|简易方程

    教学目标 1.会解,并能用解简单的应用题; 2.通过代数法解进一步培养学生的运算能力,发展学生的应用意识; 3.通过解决问题的实践,激发学生的学习兴趣,培养学生的钻研精神。教学建议 一、教学重点、难点 重点:的解法; 难点:根据实际问题中的数量关系正确地列出方程并求解。 二、重点、难点分析 解的基...

    发布于:2026-01-18

    详细阅读
  • 【一元一次方程的解法教案】一元一次方程和它的解法

    一、素质教育目标 (一)知识教学点 1.要求学生学会用移项解方程的方法. 2.使学生掌握移项变号的基本原则. (二)能力训练点 由移项变形方法的教学,培养学生由算术解法过渡到代数解法的解方程的基本能力. (三)德育渗透点 用代数方法解方程中,渗透了数学中的化未知为已知的重要数学思想. (四)美育渗透...

    发布于:2026-01-18

    详细阅读
  • 《走一步|《走一步,再走一步》教案设计

    课题: 邓稼先教学目的: 1、 掌握本文的生字新词,理解文中两个古诗文小段。 2、 灵活运用速读、默读、朗读等阅读方式阅读课文。 3、 学习邓稼先将个人生命奉献给祖国国防事业的崇高情怀。 教学重点: 用速读、默读、朗读等阅读方式阅读课文。 教学难点 : 1、 第一部分写百年屈辱史的用意; 2、 把邓...

    发布于:2026-01-18

    详细阅读
  • 同类项的定义|同类项

    教学设计示例 一、素质教育目标 (一)知识教学点 1.掌握:什么样的项是. 2.了解:了解可以合并. 3.应用:会合并,会利用合并的知识解决一些实际问题. (二)能力训练点 通过例题的讲解与训练,使学生熟练进行的合并. (三)德育渗透点 通过由数的加减推广到的合并,可以培养学生由特殊到一般的思维规律...

    发布于:2026-01-18

    详细阅读
  • 【一元一次方程的应用】一元一次方程的应用

    5 3 用方程解决问题(2)--打折销售 学 习目标:1、进一步经历运用方程解决实际问题的过程。2、提高学生找等量关系列方程的能力。3、培养学生的抽象、概括、分析和解决问题的能力。4、学会用数学的眼光去看待、分析现实生活中的情景。重点:1 如何从实际问题中寻找等量关系...

    发布于:2026-01-18

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计