82消元解二元一次方程组教案|8.2 消元(二)(第一课时)

七年级数学教案 2017-02-07 网络整理 晴天

【jiaoan.jxxyjl.com--七年级数学教案】

   一、知识与技能目标    1.用代入法、加减法解二元一次方程组.毛    2.了解解二元一次方程组时的“消元思想”,“化未知为已知”的化归思想.    3.会用二元一次方程组解决实际问题.    4.在列方程组的建模过程中,强化方程的模型思想,培养学生列方程解决实际问题的意识和能力.    5.将解方程组的技能训练与实际问题的解决融为一体,进一步提高解方程组的技能.    二、过程与方法目标    1.通过探索二元一次方程组的解法的过程,了解二元一次方程组的“消元”思想,培养学生良好的探索习惯.    2.通过对具体实际问题分解,组织学生自主交流、探索,去发现列方程建模的过程,培养学生用数学的意识.    三、情感态度与价值观目标    1.在学生了解二元一次方程组的“消元”思想,从而初步理解化“未知”为“已知”和化复杂问题为简单问题的化归思想中,享受学习数学的乐趣,增强学习数学的信息。    2.培养学生合作交流,自主探索的良好习惯。    3.体会方程组是刻画现实世界的有效数学模型,培养应用数学的意识。    4.在用方程组解决实际问题的过程中,体验数学的实用性,提高学习数学的兴趣。新授课:一、创设情境,导入新课    甲、乙、丙三位同学是好朋友,平时互相帮助。甲借给乙10元钱,乙借给丙8元钱,丙又给甲12元钱,如果允许转帐,最后甲、乙、丙三同学最终谁欠谁的钱,欠多少?    二、师生互动,课堂探究    (一)提高问题,引发讨论①②    我们知道,对于方程组       , 可以用代入消元法求解。    这个方程组的两个方程中,y的系数有什么关系?利用这种关系你能发现新的消元方法吗?    (二)导入知识,解释疑难    1.问题的解决    上面的两个方程中未知数y的系数相同,②-①可消去未知数y,得(2x+y)-(x+y)=40-22  即x=18,把x=18代入①得y=4。另外,由①-②也能消去未知数y,得(x+y)-(2x+y)=22-40  即-x=-18,x=18,把x=18代入①得y=4.①②    2.想一想:联系上面的解法,想一想应怎样解方程组     分析:这两个方程中未知数y的系数互为相反数,因此由①+②可消去未知数y,从而求出未知数x的值。    解:由①+②得  19x=11.6  x=     把x= 代入①得y=-     ∴这个方程组的解为     3.加减消元法的概念    从上面两个方程组的解法可以发现,把两个二元一次方程的两边分别进行相加减,就可以消去一个未知数,得到一个一元一次方程。    两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。123    4.例题讲解①②    用加减法解方程组     分析:这两个方程中没有同一个未知数的系数相反或相同,直接加减两个方程不能消元,试一试,能否对方程变形,使得两个方程中某个未知数的系数相反或相同。    解:①×3,得  9x+12y=48  ③    ②×2,得  10x-12y=66 ④    ③+④,得  19x=114                 x=6    把x=6代入①,得3×6+4y=16    4y=-2, y=-     所以,这个方程组的解是     议一议:本题如果用加减法消去x应如何解?解得结果与上面一样吗?    解:①×5,得  15x+20y=80 ③    ②×3,得  15x-18=99 ④    ③-④,得 38y=-19               y=-     把y=- 代入①,得3x+4×(- )=16                                3x=18                                 x=6    所以,这个方程组的解为     如果求出y=- 后,把y= 代入②也可以求出未知数x的值。    5.做一做①②    解方程组     分析:本题不能直接运用加减法求解,要进行化简整理后再求解。①②    解:化简方程组,得     ③-④,得4x=36               x=9    把x=9代入④(也可代入③,但不佳),得    10×9-3y=48     -3y=-42       y=14    ∴这个方程组的解为     点评:当方程组比较复杂时,应先化简,并整理成标准形式.本题还可以把2x+3y和2x-3y当成两个整体,用换元法,设2x+3y=a,2x-3y=b,转化为以a、b为未知数的二元一次方程组.    6.想一想    (1)加减消元法解二元一次方程组的基本思想是什么?    (2)用加减消元法解二元一次方程组的主要步骤有哪些?师生共析:(1)用加减消元法解二元一次方程组的基本思路仍然是“消元”.    (2)用加减法解二元一次方程组的一般步骤:    第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,可以直接把两个方程的两边相减,消去这个未知数.123    第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元.    第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,常数项在方程的右边的形式,再作如上加减消元的考虑.    (三)归纳总结,知识回顾    本节课,我们主要是学习了二元一次方程组的另一解法──加减法.通过把方程组中的两个方程进行相加或相减,消去一个未知数,化“二元”为“一元”.    作业:1.用加减法解下面方程组时,你认为先消去哪个未知数较简单,填写消元的方法.①②    (1)         ,消元方法_________.①②    (2)        ,消元方法_________.2.用加减法解下列方程组:    (1)        (2)     (3)          (4) 参考答案    1.(1)①×②-②消去y  (2)①×2+②×3消去n    2.(1)   (2)   (3)   (4)123

本文来源:https://jiaoan.jxxyjl.com/qinianjishuxuejiaoan/48746.html

  • 平行线的性质|平行线的性质

    教学建议 1、教材分析 (1)知识结构 : (2)重点、难点分析 本节内容的重点是.教材上明确给出了“两直线平行,同位角相等”推出“两直线平行,内错角相等”的证明过程.而且直接运用了“∵”、“∴”的推理形式,为学生创设了一个学习推理的环境,对逻辑推理能力是一个渗透.因此,这一节课有着承上启下的作用...

    发布于:2026-01-18

    详细阅读
  • 【平行线的判定】平行线的判定

    教学建议 1、教材分析 (1)知识结构: 由平行线的画法,引出公理(同位角相等,两直线平行).由公理推出:内错角相等,两直线平行.同旁内角互补,两条直线平行,这两个定理. (2)重点、难点分析 : 本节的重点是:公理及两个判定定理.一般的定义与第一个判定定理是等价的.都可以做判定的方法.但平行线的定...

    发布于:2026-01-18

    详细阅读
  • 【一元一次方程的解法教案】一元一次方程和它的解法

    教学目的:掌握移项法则,并能利用移项法则准确 迅速地解一元一次方程教学重点:移项法则教学难点 :通过引例归纳移项法则教学过程 :一、复习提问 1、什么叫等式的性质? 2、什么叫方程? 二、新课:导语 :从这节课开始学习和研究,在...

    发布于:2026-01-18

    详细阅读
  • [简易方程]简易方程

    教学目标 1.会解,并能用解简单的应用题; 2.通过代数法解进一步培养学生的运算能力,发展学生的应用意识; 3.通过解决问题的实践,激发学生的学习兴趣,培养学生的钻研精神。教学建议 一、教学重点、难点 重点:的解法; 难点:根据实际问题中的数量关系正确地列出方程并求解。 二、重点、难点分析 解的基本...

    发布于:2026-01-18

    详细阅读
  • [二元一次方程组]二元一次方程组

    教学目的1、使学生二元一次方程、的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。2、使学生了解二元一次方程、的解的含义,会检验一对数是不是它们的解。3、通过和一元一次方程的比较,加强学生的类比的思想方法。通过“引例”的学习,使学生认识数学是根据实际的需要而产生发展的观点。教学...

    发布于:2026-01-18

    详细阅读
  • 简易方程|简易方程

    教学目标 1.会解,并能用解简单的应用题; 2.通过代数法解进一步培养学生的运算能力,发展学生的应用意识; 3.通过解决问题的实践,激发学生的学习兴趣,培养学生的钻研精神。教学建议 一、教学重点、难点 重点:的解法; 难点:根据实际问题中的数量关系正确地列出方程并求解。 二、重点、难点分析 解的基...

    发布于:2026-01-18

    详细阅读
  • 【一元一次方程的解法教案】一元一次方程和它的解法

    一、素质教育目标 (一)知识教学点 1.要求学生学会用移项解方程的方法. 2.使学生掌握移项变号的基本原则. (二)能力训练点 由移项变形方法的教学,培养学生由算术解法过渡到代数解法的解方程的基本能力. (三)德育渗透点 用代数方法解方程中,渗透了数学中的化未知为已知的重要数学思想. (四)美育渗透...

    发布于:2026-01-18

    详细阅读
  • 《走一步|《走一步,再走一步》教案设计

    课题: 邓稼先教学目的: 1、 掌握本文的生字新词,理解文中两个古诗文小段。 2、 灵活运用速读、默读、朗读等阅读方式阅读课文。 3、 学习邓稼先将个人生命奉献给祖国国防事业的崇高情怀。 教学重点: 用速读、默读、朗读等阅读方式阅读课文。 教学难点 : 1、 第一部分写百年屈辱史的用意; 2、 把邓...

    发布于:2026-01-18

    详细阅读
  • 同类项的定义|同类项

    教学设计示例 一、素质教育目标 (一)知识教学点 1.掌握:什么样的项是. 2.了解:了解可以合并. 3.应用:会合并,会利用合并的知识解决一些实际问题. (二)能力训练点 通过例题的讲解与训练,使学生熟练进行的合并. (三)德育渗透点 通过由数的加减推广到的合并,可以培养学生由特殊到一般的思维规律...

    发布于:2026-01-18

    详细阅读
  • 【一元一次方程的应用】一元一次方程的应用

    5 3 用方程解决问题(2)--打折销售 学 习目标:1、进一步经历运用方程解决实际问题的过程。2、提高学生找等量关系列方程的能力。3、培养学生的抽象、概括、分析和解决问题的能力。4、学会用数学的眼光去看待、分析现实生活中的情景。重点:1 如何从实际问题中寻找等量关系...

    发布于:2026-01-18

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计