82消元解二元一次方程组教案|8.2 消元(二)(第一课时)
【jiaoan.jxxyjl.com--七年级数学教案】
一、知识与技能目标 1.用代入法、加减法解二元一次方程组.毛 2.了解解二元一次方程组时的“消元思想”,“化未知为已知”的化归思想. 3.会用二元一次方程组解决实际问题. 4.在列方程组的建模过程中,强化方程的模型思想,培养学生列方程解决实际问题的意识和能力. 5.将解方程组的技能训练与实际问题的解决融为一体,进一步提高解方程组的技能. 二、过程与方法目标 1.通过探索二元一次方程组的解法的过程,了解二元一次方程组的“消元”思想,培养学生良好的探索习惯. 2.通过对具体实际问题分解,组织学生自主交流、探索,去发现列方程建模的过程,培养学生用数学的意识. 三、情感态度与价值观目标 1.在学生了解二元一次方程组的“消元”思想,从而初步理解化“未知”为“已知”和化复杂问题为简单问题的化归思想中,享受学习数学的乐趣,增强学习数学的信息。 2.培养学生合作交流,自主探索的良好习惯。 3.体会方程组是刻画现实世界的有效数学模型,培养应用数学的意识。 4.在用方程组解决实际问题的过程中,体验数学的实用性,提高学习数学的兴趣。新授课:一、创设情境,导入新课 甲、乙、丙三位同学是好朋友,平时互相帮助。甲借给乙10元钱,乙借给丙8元钱,丙又给甲12元钱,如果允许转帐,最后甲、乙、丙三同学最终谁欠谁的钱,欠多少? 二、师生互动,课堂探究 (一)提高问题,引发讨论①② 我们知道,对于方程组 , 可以用代入消元法求解。 这个方程组的两个方程中,y的系数有什么关系?利用这种关系你能发现新的消元方法吗? (二)导入知识,解释疑难 1.问题的解决 上面的两个方程中未知数y的系数相同,②-①可消去未知数y,得(2x+y)-(x+y)=40-22 即x=18,把x=18代入①得y=4。另外,由①-②也能消去未知数y,得(x+y)-(2x+y)=22-40 即-x=-18,x=18,把x=18代入①得y=4.①② 2.想一想:联系上面的解法,想一想应怎样解方程组 分析:这两个方程中未知数y的系数互为相反数,因此由①+②可消去未知数y,从而求出未知数x的值。 解:由①+②得 19x=11.6 x= 把x= 代入①得y=- ∴这个方程组的解为 3.加减消元法的概念 从上面两个方程组的解法可以发现,把两个二元一次方程的两边分别进行相加减,就可以消去一个未知数,得到一个一元一次方程。 两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。123 4.例题讲解①② 用加减法解方程组 分析:这两个方程中没有同一个未知数的系数相反或相同,直接加减两个方程不能消元,试一试,能否对方程变形,使得两个方程中某个未知数的系数相反或相同。 解:①×3,得 9x+12y=48 ③ ②×2,得 10x-12y=66 ④ ③+④,得 19x=114 x=6 把x=6代入①,得3×6+4y=16 4y=-2, y=- 所以,这个方程组的解是 议一议:本题如果用加减法消去x应如何解?解得结果与上面一样吗? 解:①×5,得 15x+20y=80 ③ ②×3,得 15x-18=99 ④ ③-④,得 38y=-19 y=- 把y=- 代入①,得3x+4×(- )=16 3x=18 x=6 所以,这个方程组的解为 如果求出y=- 后,把y= 代入②也可以求出未知数x的值。 5.做一做①② 解方程组 分析:本题不能直接运用加减法求解,要进行化简整理后再求解。①② 解:化简方程组,得 ③-④,得4x=36 x=9 把x=9代入④(也可代入③,但不佳),得 10×9-3y=48 -3y=-42 y=14 ∴这个方程组的解为 点评:当方程组比较复杂时,应先化简,并整理成标准形式.本题还可以把2x+3y和2x-3y当成两个整体,用换元法,设2x+3y=a,2x-3y=b,转化为以a、b为未知数的二元一次方程组. 6.想一想 (1)加减消元法解二元一次方程组的基本思想是什么? (2)用加减消元法解二元一次方程组的主要步骤有哪些?师生共析:(1)用加减消元法解二元一次方程组的基本思路仍然是“消元”. (2)用加减法解二元一次方程组的一般步骤: 第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,可以直接把两个方程的两边相减,消去这个未知数.123 第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元. 第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,常数项在方程的右边的形式,再作如上加减消元的考虑. (三)归纳总结,知识回顾 本节课,我们主要是学习了二元一次方程组的另一解法──加减法.通过把方程组中的两个方程进行相加或相减,消去一个未知数,化“二元”为“一元”. 作业:1.用加减法解下面方程组时,你认为先消去哪个未知数较简单,填写消元的方法.①② (1) ,消元方法_________.①② (2) ,消元方法_________.2.用加减法解下列方程组: (1) (2) (3) (4) 参考答案 1.(1)①×②-②消去y (2)①×2+②×3消去n 2.(1) (2) (3) (4)123
本文来源:https://jiaoan.jxxyjl.com/qinianjishuxuejiaoan/48746.html
-
【有理数的除法】有理数的除法详细阅读
教学目标 1.理解有理数除法的意义,熟练掌握有理数除法法则,会进行运算; 2.了解倒数概念,会求给定有理数的倒数; 3.通过将除法运算转化为乘法运算,培养学生的转化的思想;通过运算,培养学生的运算能力。教学建议 (一)重点、难点分析 本节教学的重点是熟练进行运算,教学难点是理解法则。 1.有理数除法...
-
平方差公式|平方差公式详细阅读
教学建议 一、知识结构 二、重点、难点分析 本节教学的重点是掌握公式的结构特征及正确运用公式.难点是公式推导的理解及字母的广泛含义.是进一步学习完全平方公式、进行相关代数运算与变形的重要知识基础. 1.是由多项式乘法直接计算得出的: 与一般式多项式的乘法一样,积的项数是多项式项数的积,即四项.合并...
-
【平行线的判定】平行线的判定详细阅读
一、教学目标 1.了解推理、证明的格式,理解判定定理的证法. 2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证. 3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力. 4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进...
-
【一元一次不等式组和它的解法视频】一元一次不等式组和它的解法详细阅读
教学建议 一、知识结构 本书首先结合实例引入一元一次不等式组的解集的概念,然后通过三个例题说明利用数轴解一元一次不等式组的方法,最后对一元一次不等式组的解法步骤进行了总结. 二、重点、难点分析 本节教学的重点是掌握一元一次不等式组的解法步骤并准确地求出解集.难点是正确应用不等式的基本性质对不等式进行...
-
空间里的平行关系的重要定理|空间里的平行关系详细阅读
教学建议 一、知识结构 在平行线知识的基础上,教科书以学生对长方体的直观认识为基础,通过观察长方体的某些棱与面、面与面的不相交,进而把它们想象成空间里的直线与平面、平面与平面的不相交,来建立空间里平行的概念.培养学生的空间观念. 二、重点、难点分析 能认识空间里直线与直线、直线与平面、平面与平面的平...
-
绝对值|绝对值详细阅读
教学目标 1.了解的概念,会求有理数的; 2.会利用比较两个负数的大小; 3.在概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力.教学建议 一、重点、难点分析 概念 既是本节的教学重点又是教学难点。关于的概念,需要明确的是无论是的几何定义,还是的代数定义,都揭示了的一个重要性质——非...
-
[有理数的减法]有理数的减法详细阅读
教学目标 1.理解掌握法则,会将运算转化为加法运算; 2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过运算,培养学生的运算能力. 3.通过揭示法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.教学建议 (一) 重点、难点分析 本节重点是运用法则熟练进行减法运算。解有理数减法的计算题需严...
-
[二元一次方程组]二元一次方程组详细阅读
教学建议 一、重点、难点分析 本节教学的重点是使学生了解二元一次方程、以及的解的含义,会检验一对数值是否是某个的解.难点是了解的解的含义.这里困难在于从1个数值变成了2个数值,而且这2个数值合在一起,才算作的解.用大括号来表示的解,可以使学生从形式上克服理解的困难;而讲清问题中已含有两个互相联系着的...
-
[有理数的混合运算]有理数的混合运算详细阅读
一、素质教育目标 (一)知识教学点 能按照有理数的运算顺序,正确熟练地进行有理数的加、减、乘、除、乘方的混合运算. (二)能力训练点 培养学生的观察能力和运算能力. (三)德育渗透点 培养学生在计算前认真审题,确定运算顺序,计算中按步骤审慎进行,最后要验算的好的习惯. (四)美育渗透点 通过本节课的...
-
用加减法解二元一次方程组|用加减法解二元一次方程组详细阅读
教学建议 1.教材分析 (1)知识结构 (2)重点、难点分析 重点:本小节的重点是使学生学会 这也是一种全新的知识,与在一元一次方程两边都加上、减去同一个数或同一个整式,或者都乘以、除以同一个非零数的情况是不一样的,但运用这项知识(这里也表现为一种方法),有时可以简捷地求出二元一次方程组的解,因此...