函数与方程及不等式关系的思维导图|高二数学《函数、方程及不等式的关系》集体备课

高二数学教案 2014-05-30 网络整理 晴天

【jiaoan.jxxyjl.com--高二数学教案】

高考要求
三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具 高考试题中近一半的试题与这三个“二次”问题有关 本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法
重难点归纳
1 二次函数的基本性质
(1)二次函数的三种表示法
y=ax2+bx+c;y=a(x-x1)(x-x2);y=a(x-x0)2+n
(2)当a>0,f(x)在区间[p,q]上的最大值m,最小值m,令x0=  (p+q)
若- <<i>p,则f(p)=m,f(q)=m;
若p≤- <<i>x0,则f(- )=m,f(q)=m;
若x0≤- <<i>q,则f(p)=m,f(- )=m;
若- ≥q,则f(p)=m,f(q)=m
2 二次方程f(x)=ax2+bx+c=0的实根分布及条件
(1)方程f(x)=0的两根中一根比r大,另一根比r小 a·f(r)<0;
(2)二次方程f(x)=0的两根都大于r 
(3)二次方程f(x)=0在区间(p,q)内有两根
(4)二次方程f(x)=0在区间(p,q)内只有一根 f(p)·f(q)<0,或f(p)=0(检验)或f(q)=0(检验)检验另一根若在(p,q)内成立
(5)方程f(x)=0两根的一根大于p,另一根小于q(p<<i>q)
3 二次不等式转化策略
(1)二次不等式f(x)=ax2+bx+c≤0的解集是
(-∞,α )∪[β,+∞ a<0且f(α)=f(β)=0;
(2)当a>0时,f(α)<<i>f(β)  |α+ |<|β+ |,
当a<0时,f(α)<<i>f(β) |α+ |>|β+ |;
(3)当a>0时,二次不等式f(x)>0在[p,q]恒成立

(4)f(x)>0恒成立
典型题例示范讲解
例1已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a、b、c满足a>b>c,a+b+c=0,(a,b,c∈r)
(1)求证 两函数的图象交于不同的两点a、b;
(2)求线段ab在x轴上的射影a1b1的长的取值范围
命题意图 本题主要考查考生对函数中函数与方程思想的运用能力
知识依托 解答本题的闪光点是熟练应用方程的知识来解决问题及数与形的完美结合
错解分析 由于此题表面上重在“形”,因而本题难点就是一些考生可能走入误区,老是想在“形”上找解问题的突破口,而忽略了“数”
技巧与方法 利用方程思想巧妙转化
(1)证明 由消去y得ax2+2bx+c=0
δ=4b2-4ac=4(-a-c)2-4ac=4(a2+ac+c2)=4[(a+ c2]
∵a+b+c=0,a>b>c,∴a>0,c<0
∴ c2>0,∴δ>0,即两函数的图象交于不同的两点
(2)解 设方程ax2+bx+c=0的两根为x1和x2,则x1+x2=- ,x1x2=
|a1b1|2=(x1-x2)2=(x1+x2)2-4x1x2
 
∵a>b>c,a+b+c=0,a>0,c<0
∴a>-a-c>c,解得 ∈(-2,- )
∵ 的对称轴方程是
∈(-2,- )时,为减函数
∴|a1b1|2∈(3,12),故|a1b1|∈( )
例2已知关于x的二次方程x2+2mx+2m+1=0
(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m的范围
(2)若方程两根均在区间(0,1)内,求m的范围
命题意图 本题重点考查方程的根的分布问题
知识依托 解答本题的闪光点是熟知方程的根对于二次函数性质所具有的意义
错解分析 用二次函数的性质对方程的根进行限制时,条件不严谨是解答本题的难点
技巧与方法 设出二次方程对应的函数,可画出相应的示意图,然后用函数性质加以限制123
解 (1)条件说明抛物线f(x)=x2+2mx+2m+1与x轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得

 (2)据抛物线与x轴交点落在区间(0,1)内,列不等式组
  
(这里0<-m<1是因为对称轴x=-m应在区间(0,1)内通过)
例3已知对于x的所有实数值,二次函数f(x)=x2-4ax+2a+12(a∈r)的值都是非负的,求关于x的方程 =|a-1|+2的根的取值范围
解 由条件知δ≤0,即(-4a)2-4(2a+12)≤0,∴- ≤a≤2
(1)当- ≤a<1时,原方程化为
x=-a2+a+6,∵-a2+a+6=-(a- )2+
∴a=- 时,xmin= ,a= 时,xmax=
∴ ≤x≤
(2)当1≤a≤2时,x=a2+3a+2=(a+ )2-
∴当a=1时,xmin=6,当a=2时,xmax=12,∴6≤x≤12
综上所述, ≤x≤12
学生巩固练习
1 若不等式(a-2)x2+2(a-2)x-4<0对一切x∈r恒成立,则a的取值范围是(    )
a (-∞,2             b -2,2       c (-2,2        d (-∞,-2)
2 设二次函数f(x)=x2-x+a(a>0),若f(m)<0,则f(m-1)的值为(    )
a 正数           b 负数       c 非负数        d 正数、负数和零都有可能
3 已知二次函数f(x)=4x2-2(p-2)x-2p2-p+1,若在区间[-1,1]内至少存在一个实数c,使f(c)>0,则实数p的取值范围是_________
4 二次函数f(x)的二次项系数为正,且对任意实数x恒有f(2+x)=f(2-x),若f(1-2x2)<<i>f(1+2x-x2),则x的取值范围是_________
5 已知实数t满足关系式  (a>0且a≠1)
(1)令t=ax,求y=f(x)的表达式;
(2)若x∈(0,2 时,y有最小值8,求a和x的值
6 如果二次函数y=mx2+(m-3)x+1的图象与x轴的交点至少有一个在原点的右侧,试求m的取值范围
7 二次函数f(x)=px2+qx+r中实数p、q、r满足 =0,其中m>0,求证
(1)pf( )<0;
(2)方程f(x)=0在(0,1)内恒有解
8 一个小服装厂生产某种风衣,月销售量x(件)与售价p(元/件)之间的关系为p=160-2x,生产x件的成本r=500+30x元
(1)该厂的月产量多大时,月获得的利润不少于1300元?
(2)当月产量为多少时,可获得最大利润?最大利润是多少元?
参考答案
1 解析 当a-2=0即a=2时,不等式为-4<0,恒成立 ∴a=2,当a-2≠0时,则a满足 ,解得-2<a<2,所以a的范围是-2<a≤2
答案 c
2 解析 ∵f(x)=x2-x+a的对称轴为x= ,且f(1)>0,则f(0)>0,而f(m)<0,∴m∈(0,1), ∴m-1<0,∴f(m-1)>0
答案 a
3 解析 只需f(1)=-2p2-3p+9>0或f(-1)=-2p2+p+1>0即-3<p<或- <p<1 ∴p∈(-3, )
答案 (-3, )
4 解析 由f(2+x)=f(2-x)知x=2为对称轴,由于距对称轴较近的点的纵坐标较小,
∴|1-2x2-2|<|1+2x-x2-2|,∴-2<x<0
答案 -2<x<0
5 解 (1)由loga 得logat-3=logty-3logta
由t=ax知x=logat,代入上式得x-3= ,
∴logay=x2-3x+3,即y=a  (x≠0)
(2)令u=x2-3x+3=(x- )2+  (x≠0),则y=au
①若0<a<1,要使y=au有最小值8,123
则u=(x- )2+ 在(0,2 上应有最大值,但u在(0,2 上不存在最大值
②若a>1,要使y=au有最小值8,则u=(x- )2+ ,x∈(0,2 应有最小值
∴当x= 时,umin= ,ymin=
由 =8得a=16 ∴所求a=16,x=
6 解 ∵f(0)=1>0
(1)当m<0时,二次函数图象与x轴有两个交点且分别在y轴两侧,符合题意
(2)当m>0时,则 解得0<m≤1
综上所述,m的取值范围是{m|m≤1且m≠0}
7 证明 (1)
,由于f(x)是二次函数,故p≠0,又m>0,所以,pf( )<0
(2)由题意,得f(0)=r,f(1)=p+q+r
①当p<0时,由(1)知f( )<0
若r>0,则f(0)>0,又f( )<0,所以f(x)=0在(0, )内有解;
若r≤0,则f(1)=p+q+r=p+(m+1)=(- )+r= >0,
又f( )<0,所以f(x)=0在( ,1)内有解
②当p<0时同理可证
8 解 (1)设该厂的月获利为y,依题意得
y=(160-2x)x-(500+30x)=-2x2+130x-500
由y≥1300知-2x2+130x-500≥1300
∴x2-65x+900≤0,∴(x-20)(x-45)≤0,解得20≤x≤45
∴当月产量在20~45件之间时,月获利不少于1300元
(2)由(1)知y=-2x2+130x-500=-2(x- )2+1612 5
∵x为正整数,∴x=32或33时,y取得最大值为1612元,
∴当月产量为32件或33件时,可获得最大利润1612元

123

本文来源:https://jiaoan.jxxyjl.com/gaoershuxuejiaoan/19239.html

  • 算术平均数和几何平均数的不等式_算术平均数与几何平均数(一)

    教学目标 (1)掌握“两个正数的算术平均数不小于它们的几何平均数”这一重要定理; (2)能运用定理证明不等式及求一些函数的最值; (3)能够解决一些简单的实际问题; (4)通过对不等式的结构的分析及特征的把握掌握重要不等式的联系; (5)通过对重要不等式的证明和等号成立的条件的分析,培养学生严谨科...

    发布于:2025-11-23

    详细阅读
  • 算术平均数和几何平均数的不等式_算术平均数与几何平均数(二)

    第一课时一、教材分析 (一)教材所处的地位和作用 “算术平均数与几何平均数”是全日制普通高级中学教科书(试验修订本·必修)数学第二册(上)“不等式”一章的内容,是在学完不等式性质的基础上对不等式的进一步研究.本节内容具有变通灵活性、应用广泛性、条件约束性等特点,所以本节内容是培养学生应用...

    发布于:2025-11-23

    详细阅读
  • 曲线和方程_曲线和方程

    教学目标 (1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题. (2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念. (3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点. (4)通过求曲线方程的教学,培养学生的转...

    发布于:2025-11-23

    详细阅读
  • 不等式的性质二是什么|不等式的性质(二)

    第二课时教学目标 1.理解同向不等式,异向不等式概念; 2.掌握并会证明定理1,2,3; 3.理解定理3的推论是同向不等式相加法则的依据,定理3是移项法则的依据; 4.初步理解证明不等式的逻辑推理方法 教学重点:定理1,2,3的证明的证明思路和推导过程教学难点 :理解证明不等式的逻辑推理方法教学...

    发布于:2025-11-23

    详细阅读
  • [直线的倾斜角和斜率教案]直线的倾斜角和斜率

    教学目标 (1)了解直线方程的概念. (2)正确理解直线倾斜角和斜率概念.理解每条直线的倾斜角是唯一的,但不是每条直线都存在斜率. (3)理解公式的推导过程,掌握过两点的直线的斜率公式. (4)通过直线倾斜角概念的引入和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交...

    发布于:2025-11-22

    详细阅读
  • 算术平均数和几何平均数的不等式_算术平均数与几何平均数(二)

    第一课时一、教材分析 (一)教材所处的地位和作用 “算术平均数与几何平均数”是全日制普通高级中学教科书(试验修订本·必修)数学第二册(上)“不等式”一章的内容,是在学完不等式性质的基础上对不等式的进一步研究.本节内容具有变通灵活性、应用广泛性、条件约束性等特点,所以本节内容是培养学生应用...

    发布于:2025-11-22

    详细阅读
  • [简单的线性规划教案]简单的线性规划(二)

    线性规划教学设计方案(二)教学目标 巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值.重点难点 理解二元一次不等式表示平面区域是教学重点. 如何扰实际问题转化为线性规划问题,并给出解答是教学难点.教学步骤【新课引入】 我们知道,二元一次不等式和二元一次不等式组都表示平面...

    发布于:2025-11-22

    详细阅读
  • [二阶琴生不等式的证明]不等式的证明(二)

    第二课时教学目标 1.进一步熟练掌握比较法证明不等式; 2.了解作商比较法证明不等式; 3.提高学生解题时应变能力 教学重点 比较法的应用教学难点 常见解题技巧教学方法 启发引导式教学活动 (一)导入 新课 (教师活动)教师打出字幕(复习提问),请三位同学回答问题,教师点评. (学生活动...

    发布于:2025-11-22

    详细阅读
  • 【简单的线性规划一】简单的线性规划(一)

    教学目标 (1)使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域; (2)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念; (3)了解线性规化问题的图解法,并能应用它解决一些简单的实际问题; (4)培养学生观察、联想以...

    发布于:2025-11-22

    详细阅读
  • 一元函数不等式的证明|不等式的证明(一)

    教学目标 (1)理解证明不等式的三种方法:比较法、综合法和分析法的意义; (2)掌握用比较法、综合法和分析法来证简单的不等式; (3)能灵活根据题目选择适当地证明方法来证不等式; (4)能用不等式证明的方法解决一些实际问题,培养学生分析问题、解决问题的能力; (6)通过不等式证明,培养学生逻辑推理...

    发布于:2025-11-22

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计