分式不等式的解法|不等式的解法举例

高二数学教案 2014-06-05 网络整理 晴天

【jiaoan.jxxyjl.com--高二数学教案】

教学目标


(1)能熟练运用不等式的基本性质来解不等式;

(2)在巩固一元一次不等式和一元一次不等式组、一元二次不等式的解法基础上,掌握分式不等式、高次不等式的解法;

(3)能将较复杂的绝对值不等式转化为简单的绝对值不等式、一元二次不等式(组)来解;

(4)通过解不等式,要向学生渗透转化、数形结合、换元、分类讨论等数学思想;

(5)通过解各种类型的不等式,培养学生的观察、比较及概括能力,培养学生的勇于探索、敢于创新的精神,培养学生的学习兴趣.


教学建议

一、知识结构

本节内容是在高一研究了一元一次不等式,一元二次不等式,简单的绝对值不等式及分式不等式的解法基础上,进一步深入研究较为复杂的绝对值不等式及分式不等式的解法.求解的基本思路是运用不等式的性质和有关定理、法则,将这些不等式等价转化为一次不等式(组)或二次不等式的求解,具体地说就是含有绝对值符号的不等式去掉绝对值符号,无理不等式有理化,分式不等式整式化,高次不等式一次化.其基本模式为:
  ;

;

;

 

二、重点、难点分析

本节的重点和一个难点是不等式的等价转化.解不等式与解方程有类似之处,但其二者的区别更要加以重视.解方程所产生的增根是可以通过检验加以排除的,由于不等式的解集一般都是无限集,如果产生了增根却是无法检验加以排除的,所以解不等式的过程一定要保证同解,所涉及的变换一定是等价变换.在学生学习过程中另一个难点是不等式 的求解.这个不等式其实是一个不等式组的简化形式,当 为一元一次式时,可直接解这个不等式组,但当 为一元二次式时,就必须将其改写成两个一元二次不等式的形式,分别求解在求交集.

三、教学建议

(1)在学习新课之前一定要复习旧知识,包括一元二次不等式的解法,简单的绝对值不等式的解法,简单的分式不等式的解法,不等式的性质,实数运算的符号法则等.特别是对于基础比较差的学生,这一环节不可忽视.

(2)在研究不等式 的解法之前,应先复习解不等式组的基本思路以及不等式 的解法,然后提出如何求不等式 的解集,启发学生运用换元思想将 替换成 ,从而转化一元二次不等式组的求解.

(3)在教学中一定让学生充分讨论,明确不等式组“ ”中的两个不等式的解集间的交并关系,“ ” 两个不等式的解集间的交并关系.

(4)建议表述解不等式的过程中运用符号“ ”.

(5)建议在研究分式不等式的解法之前,先研究简单高次不等式(一端为0,另一端是若干个一次因式乘积形式的整式)的解法.可由学生讨论不同解法,师生共同比较诸法的优劣,最后落实到区间法.

(6)分式不等式 与高次不等式 的等价原因, 可以认为是不等式 两端同乘以正数 ,不等号不改变方向所得;也可以认为是 与 符号相同所得.

(7)分式不等式求解时不能盲目地去分母,但当分母恒为正数(如分母是 )时,应将其去掉,从而使不等式化简.

(8)建议补充简单的无理不等式 的解法,其中 为一次式.教学中先由学生研究探索得到求解的基本思路及方法,再由教师概括总结,得出结论后一定要强调不等号的方向对 的影响,即 保证了 ,而 却不能保证这一点,所以要分 和 两种情况进行讨论.

(9)求解不等式不仅要重视思路的理解,更要重视表述的规范,作为教师应给学生做出示范,学生通过模仿掌握书写格式,这样才有可能保证运算的合理性与结果的准确性.

 

教学设计示例

分式不等式的解法

教学目标

1.掌握分式不等式向整式不等式的转化;
2.进一步熟悉并掌握数轴标根法;
3.掌握分式不等式基本解法.

教学重点难点

重点是分式不等式解法
难点是分式不等式向整式不等式的转化

教学方法

启发式和引导式

教具准备

三角板、幻灯片

教学过程

1.复习回顾:

前面,我们学习了含有绝对值的不等式的基本解法,还了解了数轴标根法的解题思路,本节课,我们将继续研究分式不等式的解法.

2.讲授新课:

例3  解不等式 <0.

分析:这是一个分式不等式,其左边是两个关于x的二次三项式的商,根据商的符号法则,它可以化成两个不等式组:

因此,原不等式的解集就是上面两个不等式组的解集的并集,此种解法从课本可以看到.

另解:根据积的符号法则,可以将原不等式等价变形为(x2-3x+2)(x2-2x-3)<0

即(x+1)(x-1)(x-2)(x-3)<0

令(x+1)(x-1)(x-2)(x-3)=0

可得零点x=-1或1,或2或3,将数轴分成五部分(如图).

由数轴标根法可得所求不等式解集为:

{x|-1<x<1或2<x<3}

说明:(1)让学生注意数轴标根法适用条件;

(2)让学生思考 ≤0的等价变形.

例4  解不等式 >1

分析:首先转化成右端为0的分式不等式,然后再等价变形为整式不等式求解.

解:原不等式等价变形为:

-1>0

通分整理得: >0

等价变形为:(x2-2x+3)(x2-3x+2)>0

即:(x+1)(x-1)(x-2)(x-3)>0

由数轴标根法可得所求不等式解集为:

{x|x<-1或1<x<2或x>3}

说明:此题要求学生掌握较为一般的分式不等式的转化与求解.

3.课堂练习:

课本P19练习1.

补充:(1) ≥0;

(2)x(x-3)(x+1)(x-2)≤0.

课堂小结

通过本节学习,要求大家在进一步掌握数轴标根法的基础上,掌握分式不等式的基本解法,即转化为整式不等式求解.

课后作业 

习题6.4  3,4.

板书设计


教学后记

 

探究活动

试一试用所学知识解下列不等式:

(1) ;

(2) ;

(3) .

答案: (1)原式

观察这个不等式组,由于要求 ,同时要求 ,所以①式可以不解.

∴ 原式

如下图

(2)分析 当 时,不等式两边平方,当 时,在 有意义的前提下恒成立.

原式 (Ⅰ)

或(Ⅱ)

由于同时满足(2)、(3)式,所以(1)式免解.

∴ (Ⅰ)式

(Ⅱ)式 .

综合(Ⅰ)、(Ⅱ),得 .

(3)分析 当 时,不等式两边平方,当 时,原式解集为 .

原式

观察不等式组,设有可以免解的不等式.

原式

如下图

本文来源:https://jiaoan.jxxyjl.com/gaoershuxuejiaoan/19426.html

  • 圆的方程_圆的方程

    教学目标 (1)掌握圆的标准方程,能根据圆心坐标和半径熟练地写出圆的标准方程,也能根据圆的标准方程熟练地写出圆的圆心坐标和半径. (2)掌握圆的一般方程,了解圆的一般方程的结构特征,熟练掌握圆的标准方程和一般方程之间的互化. (3)了解参数方程的概念,理解圆的参数方程,能够进行圆的普通方程与参数方...

    发布于:2025-11-21

    详细阅读
  • 两条直线的位置关系_两条直线的位置关系

    教学目标 (1)熟练掌握两条直线平行与垂直的充要条件,能够根据直线的方程判断. (2)理解一条直线到另一条直线的角的概念,掌握两条直线的夹角. (3)能够根据两条直线的方程求出它们的交点坐标. (4)掌握点到直线距离公式的推导和应用. (5)进一步掌握求直线方程的方法. (6)进一步理解直线方程的...

    发布于:2025-11-21

    详细阅读
  • [不等式的性质三]不等式的性质(三)

    探究活动 能得到什么结论题目 已知 且 ,你能够推出什么结论? 分析与解:由条件推出结论,我们可以考虑把已知条件的变量范围扩大,对已知变量作运算,运用不等式的性质,或者跳出不等式去考虑一般的数学表达式。思路一:改变 的范围,可得: 1. 且 ; 2. 且 ;思路二:由已知变量作运算,可得:...

    发布于:2025-11-21

    详细阅读
  • 含有绝对值的不等式怎么解_含有绝对值的不等式

    教学目标 (1)掌握绝对值不等式的基本性质,在学会一般不等式的证明的基础上,学会含有绝对值符号的不等式的证明方法; (2)通过含有绝对值符号的不等式的证明,进一步巩固不等式的证明中的由因导果、执要溯因等数学思想方法; (3)通过证明方法的探求,培养学生勤于思考,全面思考方法; (4)通过含有绝对值...

    发布于:2025-11-21

    详细阅读
  • 【基本作图】基本作图

    教学目标 1.熟练运用尺规完成四种,并会写出已知、求作和作法. 2.培养学生准确的数学语言表达能力. 教学重点和难点 重点是掌握四种;难点是用准确精练的几何语言叙述作图过程. 教学过程 设计 一、作图的预备知识 1.明确尺规作图和的含义. 教师应着重强调尺规作图与以前画图的区别,如解释以前角平...

    发布于:2025-11-21

    详细阅读
  • 直线的倾斜角与斜率视频_数学教案-直线的倾斜角和斜率

    教学目标 (1)了解直线方程的概念. (2)正确理解直线倾斜角和斜率概念.理解每条直线的倾斜角是唯一的,但不是每条直线都存在斜率. (3)理解公式的推导过程,掌握过两点的直线的斜率公式. (4)通过直线倾斜角概念的引入和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学...

    发布于:2014-06-06

    详细阅读
  • 椭圆及其标准方程教案|椭圆及其标准方程1

    教学目标 1.掌握椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程; 2.能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程; 3.通过对椭圆概念的引入教学,培养学生的观察能力和探索能力; 4.通过椭圆的标准方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化...

    发布于:2014-06-06

    详细阅读
  • [椭圆及其标准方程教案]椭圆及其标准方程1

    教学目标 1.掌握椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程; 2.能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程; 3.通过对椭圆概念的引入教学,培养学生的观察能力和探索能力; 4.通过椭圆的标准方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的...

    发布于:2014-06-06

    详细阅读
  • 不等式的性质一二三_不等式的性质(一)

    教学目标 1.理解不等式的性质,掌握不等式各个性质的条件和结论之间的逻辑关系,并掌握它们的证明方法以及功能、运用; 2.掌握两个实数比较大小的一般方法; 3.通过不等式性质证明的学习,提高学生逻辑推论的能力; 4.提高本节内容的学习,;培养学生条理思维的习惯和认真严谨的学习态度;教学建议1.教材分...

    发布于:2014-06-05

    详细阅读
  • 一元函数不等式的证明_不等式的证明(一)

    教学目标 (1)理解证明不等式的三种方法:比较法、综合法和分析法的意义; (2)掌握用比较法、综合法和分析法来证简单的不等式; (3)能灵活根据题目选择适当地证明方法来证不等式; (4)能用不等式证明的方法解决一些实际问题,培养学生分析问题、解决问题的能力; (6)通过不等式证明,培养学生逻辑推理论...

    发布于:2014-06-05

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计