[不等式的性质2]不等式的性质(2)
【jiaoan.jxxyjl.com--高二数学教案】
课 题:不等式的性质(2)
教学目的:
1 理解同向不等式,异向不等式概念;
2 理解不等式的性质定理1—3及其证明;
3 理解证明不等式的逻辑推理方法.
4 通过对不等式性质定理的掌握,培养学生灵活应变的解题能力和思考问题严谨周密的习惯
教学重点:掌握不等式性质定理1、2、3及推论,注意每个定理的条件
教学难点:1 理解定理1、定理2的证明,即“a>b b<a和a>b,b>c a>c”的证明 这两个定理证明的依据是实数大小的比较与实数运算的符号法则
2 定理3的推论,即“a>b,c>d a+c>b+d”是同向不等式相加法则的依据 但两个同向不等式的两边分别相减时,就不能得出一般结论
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
教学方法:
引导启发结合法——即在教师引导下,由学生利用已学过的有关知识,顺利完成定理的证明过程及定理的简单应用
教学过程:
一、复习引入:
1.判断两个实数大小的充要条件是:
2.(1)如果甲的年龄大于乙的年龄,那么乙的年龄小于甲的年龄吗?为什么?
(2)如果甲的个子比乙高,乙的个子比丙高,那么甲的个子比丙高吗?为什么?
从而引出不等式的性质及其证明方法.
二、讲解新课:
1.同向不等式:两个不等号方向相同的不等式,例如:a>b,c>d,是同向不等式 异向不等式:两个不等号方向相反的不等式 例如:a>b,c<d,是异向不等式
2.不等式的性质:
定理1:如果a>b,那么b<a,如果b<a,那么a>b.(对称性)
即:a>b b<a;b<a a>b
证明:∵a>b ∴a-b>0
由正数的相反数是负数,得-(a-b)<0
即b-a<0 ∴b<a (定理的后半部分略) .
点评:可能个别学生认为定理l没有必要证明,那么问题:若a>b,则 和 谁大?根据学生的错误来说明证明的必要性 “实数a、b的大小”与“a-b与零的关系”是证明不等式性质的基础,本定理也称不等式的对称性.
定理2:如果a>b,且b>c,那么a>c.(传递性)
即a>b,b>c a>c
证明:∵a>b,b>c ∴a-b>0, b-c>0
根据两个正数的和仍是正数,得
(a-b)+( b-c)>0 即a -c>0
∴a>c
根据定理l,定理2还可以表示为:c<b,b<a c<a
点评:这是不等式的传递性、这种传递性可以推广到n个的情形.
定理3:如果a>b,那么a+c>b+c.
即a>b a+c>b+c
证明:∵a>b, ∴a-b>0,
∴(a+c)-( b+c)>0 即a+c>b+c
点评:(1)定理3的逆命题也成立;
(2)利用定理3可以得出:如果a+b>c,那么a>c-b,也就是说,不等式中任何一项改变符号后,可以把它从—边移到另一边.
推论:如果a>b,且c>d,那么a+c>b+d.(相加法则)
即a>b, c>d a+c>b+d.
证法一:
a+c>b+d
证法二:
a+c>b+d123
点评:(1)这一推论可以推广到任意有限个同向不等式两边分别相加,即:两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向;
(2)两个同向不等式的两边分别相减时,不能作出一般的结论;
三、讲解范例:
例 已知a>b,c<d,求证:a-c>b-d.(相减法则)
分析:思路一:证明“a-c>b-d”,实际是根据已知条件比较a-c与b-d的大小,所以以实数的运算性质与大小顺序之间的关系为依据,直接运用实数运算的符号法则来确定差的符号,最后达到证题目的
证法一:∵a>b,c<d
∵a-b>0,d-c>0
∴(a-c)-(b-d)
=(a-b)+(d-c)>0(两个正数的和仍为正数)
故a-c>b-d
思路二:我们已熟悉不等式的性质中的定理1~定理3及推论,所以运用不等式的性质,加以变形,最后达到证明目的
证法二:∵c<d ∴-c>-d
又∵a>b
∴a+(-c)>b+(-d)
∴a-c>b-d
四、课堂练习:
1 判断下列命题的真假,并说明理由:
(1)如果a>b,那么a-c>b-c;
(2)如果a>b,那么 >
分析:从不等式性质定理找依据,与性质定理相违的为假,与定理相符的为真
答案:(1)真 因为推理符号定理3
(2)假 由不等式的基本性质2,3(初中)可知,当c<0时, < 即不等式两边同乘以一个数,必须明确这个数的正负
2 回答下列问题:
(1)如果a>b,c>d,能否断定a+c与b+d谁大谁小?举例说明;
(2)如果a>b,c>d,能否断定a-2c与b-2d谁大谁小?举例说明
答案:(1)不能断定 例如:2>1,1<3 2+1<1+3;而2>1,-1<-0 8 2-1>1-0 8 异向不等式作加法没定论
(2)不能断定 例如a>b,c=1>d=-1 a-2c=a-2,b+2=b-2d,其大小不定 a=8>1=b时a-2c=6>b+2=3 而a=2>1=b时a-2c=0<b+2=3
3 求证:(1)如果a>b,c>d,那么a-d>b-c;
(2)如果a>b,那么c-2a<c-2b
证明:(1)
(2)a>b -2a<-2b c-2a<c-2b
4 已和a>b>c>d>0,且 ,求证:a+d>b+c
证明:∵
∴
∴(a-b)d=(c-d)b
又∵a>b>c>d>0
∴a-b>0,c-d>0,b>d>0且 >1
∴ >1
∴a-b>c-d 即a+d>b+c
评述:此题中,不等式性质和比例定理联合使用,使式子形与形之间的转换更迅速 这道题不仅有不等式性质应用的信息,更有比例的信息,因此这道题既要重视性质的运用技巧,也要重视比例定理的应用技巧
五、小结 :本节课我们学习了不等式的性质定理1~定理3及其推论,理解不等式性质的反对称性(a>b b<a=、传递性(a>b,b>c a>c)、可加性(a>b a+c>b+c)、加法法则(a>b,c>d a+c>b+d),并记住这些性质的条件,尤其是字母的符号及不等式的方向,要搞清楚这些性质的主要用途及其证明的基本方法
六、课后作业:
1.如果 ,求不等式 同时成立的条件.
解:
2.已知 , 求证:
证:∵ ∴
又∵ ∴ >0 ∴
∵ 且
∴
3.已知 比较 与 的大小.
解: -
当 时∵ 即
∴ ∴ <
当 时∵ 即 123
∴ ∴ >
4.如果 求证:
证: ∵ ∴ ∴
∵ ∴ ∴
七、板书设计(略)
八、课后记:
123-
算术平均数和几何平均数的不等式_算术平均数与几何平均数(一)详细阅读
教学目标 (1)掌握“两个正数的算术平均数不小于它们的几何平均数”这一重要定理; (2)能运用定理证明不等式及求一些函数的最值; (3)能够解决一些简单的实际问题; (4)通过对不等式的结构的分析及特征的把握掌握重要不等式的联系; (5)通过对重要不等式的证明和等号成立的条件的分析,培养学生严谨科...
-
算术平均数和几何平均数的不等式_算术平均数与几何平均数(二)详细阅读
第一课时一、教材分析 (一)教材所处的地位和作用 “算术平均数与几何平均数”是全日制普通高级中学教科书(试验修订本·必修)数学第二册(上)“不等式”一章的内容,是在学完不等式性质的基础上对不等式的进一步研究.本节内容具有变通灵活性、应用广泛性、条件约束性等特点,所以本节内容是培养学生应用...
-
曲线和方程_曲线和方程详细阅读
教学目标 (1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题. (2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念. (3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点. (4)通过求曲线方程的教学,培养学生的转...
-
不等式的性质二是什么|不等式的性质(二)详细阅读
第二课时教学目标 1.理解同向不等式,异向不等式概念; 2.掌握并会证明定理1,2,3; 3.理解定理3的推论是同向不等式相加法则的依据,定理3是移项法则的依据; 4.初步理解证明不等式的逻辑推理方法 教学重点:定理1,2,3的证明的证明思路和推导过程教学难点 :理解证明不等式的逻辑推理方法教学...
-
[直线的倾斜角和斜率教案]直线的倾斜角和斜率详细阅读
教学目标 (1)了解直线方程的概念. (2)正确理解直线倾斜角和斜率概念.理解每条直线的倾斜角是唯一的,但不是每条直线都存在斜率. (3)理解公式的推导过程,掌握过两点的直线的斜率公式. (4)通过直线倾斜角概念的引入和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交...
-
算术平均数和几何平均数的不等式_算术平均数与几何平均数(二)详细阅读
第一课时一、教材分析 (一)教材所处的地位和作用 “算术平均数与几何平均数”是全日制普通高级中学教科书(试验修订本·必修)数学第二册(上)“不等式”一章的内容,是在学完不等式性质的基础上对不等式的进一步研究.本节内容具有变通灵活性、应用广泛性、条件约束性等特点,所以本节内容是培养学生应用...
-
[简单的线性规划教案]简单的线性规划(二)详细阅读
线性规划教学设计方案(二)教学目标 巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值.重点难点 理解二元一次不等式表示平面区域是教学重点. 如何扰实际问题转化为线性规划问题,并给出解答是教学难点.教学步骤【新课引入】 我们知道,二元一次不等式和二元一次不等式组都表示平面...
-
[二阶琴生不等式的证明]不等式的证明(二)详细阅读
第二课时教学目标 1.进一步熟练掌握比较法证明不等式; 2.了解作商比较法证明不等式; 3.提高学生解题时应变能力 教学重点 比较法的应用教学难点 常见解题技巧教学方法 启发引导式教学活动 (一)导入 新课 (教师活动)教师打出字幕(复习提问),请三位同学回答问题,教师点评. (学生活动...
-
【简单的线性规划一】简单的线性规划(一)详细阅读
教学目标 (1)使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域; (2)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念; (3)了解线性规化问题的图解法,并能应用它解决一些简单的实际问题; (4)培养学生观察、联想以...
-
一元函数不等式的证明|不等式的证明(一)详细阅读
教学目标 (1)理解证明不等式的三种方法:比较法、综合法和分析法的意义; (2)掌握用比较法、综合法和分析法来证简单的不等式; (3)能灵活根据题目选择适当地证明方法来证不等式; (4)能用不等式证明的方法解决一些实际问题,培养学生分析问题、解决问题的能力; (6)通过不等式证明,培养学生逻辑推理...