【双曲线的几何性质ppt】数学教案-双曲线的几何性质
【jiaoan.jxxyjl.com--高二数学教案】
§8.4 双曲线的几何性质(第1课时)
㈠课时目标
1. 熟悉双曲线的几何性质。
2. 能理解离心率的大小对双曲线形状的影响。
3. 能运用双曲线的几何性质或图形特征,确定焦点的位置,会求双曲线的标准方程。
㈡教学过程
[情景设置]
叙述椭圆 的几何性质,并填写下表:
方程
性质
图像 (略)
范围 -a≤x≤a,-b≤y≤b
对称性 对称轴、对称中心
顶点 (±a,0)、(±b,0)
离心率 e=(几何意义)
[探索研究]
1.类比椭圆 的几何性质,探讨双曲线 的几何性质:范围、对称性、顶点、离心率。
双曲线的实轴、虚轴、实半轴长、虚半轴长及离心率的定义。
双曲线与椭圆的几何性质对比如下:
方程
性质
图像 (略) (略)
范围 -a≤x≤a,-b≤y≤b x≥a,或x≤-a,y∈R
对称性 对称轴、对称中心 对称轴、对称中心
顶点 (±a,0)、(±b,0) (-a,0)、(a,0)
离心率 0<e=<1
e=>1
下面继续研究离心率的几何意义:
(a、b、c、e关系:c2=a2+b2, e=>1)
2.渐近线的发现与论证
根据椭圆的上述四个性质,能较为准确地把 画出来吗?(能)
根据上述双曲线的四个性质,能较为准确地把 画出来吗?(不能)
通过列表描点,能把双曲线的顶点及附近的点,比较精确地画出来,但双曲线向何处伸展就不很清楚。
我们能较为准确地画出曲线y=,这是为什么?(因为当双曲线伸向远处时,它与x轴、y轴无限接近)此时,x轴、y轴叫做曲线y=的渐近线。
问:双曲线 有没有渐近线呢?若有,又该是怎样的直线呢?
引导猜想:在研究双曲线的范围时,由双曲线的标准方程可解出:
y=± =±
当x无限增大时, 就无限趋近于零,也就是说,这是双曲线y=±
与直线y=± 无限接近。
这使我们猜想直线y=± 为双曲线的渐近线。
直线y=± 恰好是过实轴端点A1、A2,虚轴端点B1、B2,作平行于坐标轴的直线x=±a, y=±b所成的矩形的两条对角线,那么,如何证明双曲线上的点沿曲线向远处运动时,与渐近线越来越接近呢?显然,只要考虑第一象限即可。
证法1:如图,设M(x0,y0)为第一象限内双曲线 上的仍一点,则
y0= ,M(x0,y0)到渐近线ay-bx=0的距离为:
∣MQ∣= =
= .
点M向远处运动, x0随着增大,∣MQ∣就逐渐减小,M点就无限接近于 y=
故把y=± 叫做双曲线 的渐近线。
3.离心率的几何意义
∵e=,c>a, ∴e>1由等式c2-a2=b2,可得 ===
e越小(接近于1) 越接近于0,双曲线开口越小(扁狭)
e越大 越大,双曲线开口越大(开阔)
4.巩固练习
求下列双曲线的渐近线方程,并画出双曲线。
①4x2-y2=4 ②4x2-y2=-4
已知双曲线的渐近线方程为x±2y=0,分别求出过以下各点的双曲线方程
①M(4, ) ②M(4, )
[知识应用与解题研究]
例 1 求双曲线9y2-16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程。
例2 双曲线型自然通风塔的外形,是双曲线的一部分绕其虚轴旋转而成的曲面,如图;它的最小半径为12m,上口半径为13m,下口半径为25m,高为55m,选择适当的坐标系,求出此双曲线的方程(精确到1m)
㈣提炼总结
1. 双曲线的几何性质及a、b、c、e的关系。
2. 渐近线是双曲线特有的性质,其发现证明蕴含了重要的数学思想与数学方法。
3. 双曲线的几何性质与椭圆的几何性质类似点和不同点。
-
算术平均数和几何平均数的不等式_算术平均数与几何平均数(一)详细阅读
教学目标 (1)掌握“两个正数的算术平均数不小于它们的几何平均数”这一重要定理; (2)能运用定理证明不等式及求一些函数的最值; (3)能够解决一些简单的实际问题; (4)通过对不等式的结构的分析及特征的把握掌握重要不等式的联系; (5)通过对重要不等式的证明和等号成立的条件的分析,培养学生严谨科...
-
算术平均数和几何平均数的不等式_算术平均数与几何平均数(二)详细阅读
第一课时一、教材分析 (一)教材所处的地位和作用 “算术平均数与几何平均数”是全日制普通高级中学教科书(试验修订本·必修)数学第二册(上)“不等式”一章的内容,是在学完不等式性质的基础上对不等式的进一步研究.本节内容具有变通灵活性、应用广泛性、条件约束性等特点,所以本节内容是培养学生应用...
-
曲线和方程_曲线和方程详细阅读
教学目标 (1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题. (2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念. (3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点. (4)通过求曲线方程的教学,培养学生的转...
-
不等式的性质二是什么|不等式的性质(二)详细阅读
第二课时教学目标 1.理解同向不等式,异向不等式概念; 2.掌握并会证明定理1,2,3; 3.理解定理3的推论是同向不等式相加法则的依据,定理3是移项法则的依据; 4.初步理解证明不等式的逻辑推理方法 教学重点:定理1,2,3的证明的证明思路和推导过程教学难点 :理解证明不等式的逻辑推理方法教学...
-
[直线的倾斜角和斜率教案]直线的倾斜角和斜率详细阅读
教学目标 (1)了解直线方程的概念. (2)正确理解直线倾斜角和斜率概念.理解每条直线的倾斜角是唯一的,但不是每条直线都存在斜率. (3)理解公式的推导过程,掌握过两点的直线的斜率公式. (4)通过直线倾斜角概念的引入和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交...
-
算术平均数和几何平均数的不等式_算术平均数与几何平均数(二)详细阅读
第一课时一、教材分析 (一)教材所处的地位和作用 “算术平均数与几何平均数”是全日制普通高级中学教科书(试验修订本·必修)数学第二册(上)“不等式”一章的内容,是在学完不等式性质的基础上对不等式的进一步研究.本节内容具有变通灵活性、应用广泛性、条件约束性等特点,所以本节内容是培养学生应用...
-
[简单的线性规划教案]简单的线性规划(二)详细阅读
线性规划教学设计方案(二)教学目标 巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值.重点难点 理解二元一次不等式表示平面区域是教学重点. 如何扰实际问题转化为线性规划问题,并给出解答是教学难点.教学步骤【新课引入】 我们知道,二元一次不等式和二元一次不等式组都表示平面...
-
[二阶琴生不等式的证明]不等式的证明(二)详细阅读
第二课时教学目标 1.进一步熟练掌握比较法证明不等式; 2.了解作商比较法证明不等式; 3.提高学生解题时应变能力 教学重点 比较法的应用教学难点 常见解题技巧教学方法 启发引导式教学活动 (一)导入 新课 (教师活动)教师打出字幕(复习提问),请三位同学回答问题,教师点评. (学生活动...
-
【简单的线性规划一】简单的线性规划(一)详细阅读
教学目标 (1)使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域; (2)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念; (3)了解线性规化问题的图解法,并能应用它解决一些简单的实际问题; (4)培养学生观察、联想以...
-
一元函数不等式的证明|不等式的证明(一)详细阅读
教学目标 (1)理解证明不等式的三种方法:比较法、综合法和分析法的意义; (2)掌握用比较法、综合法和分析法来证简单的不等式; (3)能灵活根据题目选择适当地证明方法来证不等式; (4)能用不等式证明的方法解决一些实际问题,培养学生分析问题、解决问题的能力; (6)通过不等式证明,培养学生逻辑推理...