同位角_同位角、内错角、同旁内角教案
【jiaoan.jxxyjl.com--八年级数学教案】
教学建议 一、知识结构 二、重点难点分析 本节教学的重点是同位角、内错角、同旁内角的概念.难点为在较复杂的图形中辨认同位角、内错角、同旁内角.掌握同位角、内错角、同旁内角的相关概念是进一步学习平行线、四边形等后续知识的基础. (1)两条直线被第三条直线所截,构成八个角(简称“三线八角”),其中同位角4对,内错角2对,同旁内角2对. (2)准确识别同位角、内错角、同旁内角的关键,是弄清哪两条直线被哪一条线所截.也就是说,在辨别这些角之前,要弄清哪一条直线是截线,哪两条直线是被截线. (3)在截线的同旁找同位角和同旁内角,在截线的两旁找内错角.要结合图形,熟记同位角、内错角、同旁内角的位置特点,比较它们的区别与联系. (4)在复杂的图形中识别同位角、内错角、同旁内角时,应当沿着角的边将图形补全,或者把多余的线暂时略去,找到三线八角的基本图形,进而确定这两个角的位置关系. 三、教法建议 1.上节课讨论了两条直线相交以后所形成的四个角,这一节课是进一步讨论三条直线相交后所形成的八个角,所以在教课过程,要运用基本图形结构将所学的知识及其内在联系向学生展示. 2.在讲三线八角概念时,一定要细致地分析、顾名思义,把握住两个关键的环节,“三条线与一条线”,尽量给出变式的图形,让学生分辨清楚. 3.这节课虽然不涉及两条直线平行后被第三条直线所截的问题,但在可能的情况下,将平行线的图形让学生见到,对下一步的学习很有好处,例如,平行四形中的内错角,学生开始接受起来有一定困难,在这一课时中,出现这个基本图形,为以后学习打下基础. 教学设计示例 一、素质教育目标 (一)知识教学点 1.理解同位角、内错角、同旁内角的概念. 2.结合图形识别同位角、内错角、同旁内角. (二)能力训练点 1.通过变式图形的识图训练,培养学生的识图能力. 2.通过例题口答“为什么”,培养学生的推理能力. (三)德育渗透点 从复杂图形分解为基本图形的过程中,渗透化繁为简,化难为易的化归思想;从图形变化过程中,培养学生辩证唯物主义观点. (四)美育渗透点 通过“三线八角”基本图形,使学生认识几何图形的位置美. 二、学法引导 1.教师教法:尝试指导,讨论评价、变式练习、回授. 2.学生学法:主动思考,相互研讨,自我归纳. 三、重点、难点、疑点及解决办法 (一)生点 同位角、内错角、同旁内角的概念. (二)难点 在较复杂的图形中辨认同位角、内错角、同旁内角. (三)疑点 正确理解新概念. (四)解决办法 引导学生讨论归纳三类角的特征,并以练习加以巩固. 四、课时安排 1课时 一、教具学具准备 投影仪、三角板、自制胶片. 六、师生互动活动设计 1.通过一组练习创设情境,复习基础知识,引入新课. 2.通过学生阅读书本,教师设问引导,练习巩固讲授新课. 3.通过师生互答完成课堂小结. 七、教学步骤 (一)明确目标 使学生掌握“三线八角”123,并能在图形中进行辨识. (二)整体感知 以复习旧知创设情境引入课题,以指导阅读、设计问题、小组讨论学习新知,以变式练习巩固新知. (三)教学过程 创设情境,复习导入 回答下列问题: 1.如图,∠1与∠3,∠2与∠4是什么角?它们的大小有什么关系? 2.如图,∠1与∠2,∠l与∠4是什么角?它们有什么关系? 3.如图,三条直线ab、cd、ef交于一点o,则图中有几对对顶角,有几对邻补角? 4.如图,三条直线ab、cd、ef两两相交,则图中有几对对项角,有几对邻补角? 5.三条直线相交除上述两种情况外,还有其他相交的情形吗? 学生答后,教师出示复合投影片1,在(1、2题的)图上添加一条直线cd,使cd与ef相交于某一点(如图),直线ab、cd都与ef相交或者说两条直线ab、cd被第三条直线ef所截,这样图中就构成八个角,在这八个角中,有公共顶点的两个角的关系前面已经学过,今天,我们来研究那些没有公共顶点的两个角的关系. 【板书】 2.3同位角、内错角、同旁内角 【教法说明】通过复合投影片演示了同位角、内错角、同旁内角的产生过程,并从演示过程中看到,这些角也是与相交线有关系的角,两条直线被第三条直线所截,是相交线的又一种情况.认识事物间是发展变化的辩证关系. 尝试指导,学习新知 1.学生自己尝试学习,阅读课本第67页例题前的内容. 2.设计以下问题,帮助学生正确理解概念. (1)同位角:∠4和∠8与截线及两条被截直线在位置上有什么特点?图中还有其他同位角吗? (2)内错角:∠3和∠5与截线及两条被截直线在位置上有什么特点?图中还有其他内错角吗? (3)同旁内角:∠4和∠5与截线及两条被截直线在位置上有什么特点?图中还有其他同分内角吗? (4)同位角和同分内角在位置上有什么相同点和不同点? 内错角和同旁内角在位置上有什么相同点和不同点? (5)这三类角的共同特征是什么? 3.对上述问题以小组为单位展开讨论,然后学生间互相评议. 4.教师对学生讨论过程中所发表的意见进行评判,归纳总结. 在截线的同旁找同位角和同旁内角,在截线的不同旁找内错角,因此在“三线八角”的图形中的主线是截线,抓住了截线,再利用图形结构特征(f、z、u)判断问题就迎刃而解. 【教法说明】让学生自己尝试学习,可以充分发挥学生的积极性、主动性和创造性,几个问题的设计目的是深化教学重点,使学生看书更具有针对性,避免盲目性.学生互相评价可以增加讨论的深度,教师最后评价可以统一学生的观点,学生在议议评评的过程中明理、增智,培养了能力. 投影显示(投影片2) 例题 如图,直线de、bc被直线ab所截,(1)∠l与∠2,∠1与∠3,∠1与∠4各是什么关系的角? (2)如果∠1=∠4,那么∠1和∠2相等吗?∠1和∠3互补吗?为什么? [教法说明]例题较简单,让学生口答,回答“为什么”只要求学生能用文字语言把主要根据说出来,讲明道理即可,不必太规范,等学习证明时再严格训练. 变式训练,巩固新知 投影显示(投影片3) 【123教法说明】本题是对简单变式图形的训练,以培养学生的识图能力,第2题指明第三条直线是c,即a和b被c所截,如c和a被占所截,则结果截然不同,因此遇到题目先分清哪两条直线被哪一条直线所栽,这是解题的关键和前提. 投影显示(投影片4) 【教法说明】本组练习是由同位角、内错角和同旁内角找出构成它们的“三线”,或是由“三线八角”图形判断同位角、内错角、同旁内角.这两者都需要进行这样的三个步骤,一看角的顶点;二看角的边;三看角的方位.这“三看”又离不开主线——截线的确定,让学生知道:无论图形的位置怎样变动,图形多么复杂,都要以截线为主线(不变),去解决万变的图形,另外遇到较复杂的图形,也可以从分解图形入手,把复杂图形化为若干个基本图形.如第2题由已知条件结合所求部分,对各个小题分别分解图形如下: 投影显示(投影片5) 【教法说明】学生在较复杂的图形中,对找 这一类的同位角,找 这一类的内错角,找 这一类的同旁内角有一定困难,为此安排本组选择题,有利于突破难点,第2题中学生对c、d两个图形易混淆,要加强对比以便解决教学疑点。第3题让学生掌握三角形中的3对同旁内角。另外本组练习也为后面的练习打基础。 投影显示(投影片6) 【教法说明】本组题目是上组题的延伸,再次突破难点,提高学生思维的广度与深度.学生解决此类题常常因考虑不全面而丢解,要使学生养成全方位多角度考虑问题的习惯,第2题以裁线为标准分类求解,分别把ab、bd、ef看成是截线找三类角,这样既不遗漏又不重复. (四)总结、扩展 1.本节研究了一条直线分别和两条直线相交,所得八个角的位置关系,掌握辨别这些角位置关系的关键是分清哪条线是截线,哪些线是被截直线,在截线的同旁找同位角和同旁内角,在截线的不同旁找内错角,只要抓住三线中的主线——截线,就能正确识别这三类角. 2.相交直线 3.教师指着图中的一条被截直线,问:“这条直线绕着与截线着与截线的交点旋转,当同位角相等时,两条被截直线是什么关系?” 【教法说明】将所学知识进行归纳总结,加强了知识问的联系,充分体现了所学知识的系统性,最后用是合式小结.可使学生课后自觉地去看预习,寻找答案。系统性,最后用悬念式小结,可使学生课后自觉地去看书预习,寻找答案。 八、布置作业 课本第九页第11题. 【教法说明】课本练习穿插在课堂练习中完成,故只留一道提高题,让学有余力的同学继续探究,提高学生思维广度 作业答案 4.答:(1)设e是bc延长线上的一点,∠a与∠acd、∠ace是内错角,它们分别是由直线ab、cd被直线ac截成的和直线ab、be被直线ac截成的。 (2)∠b与∠dce、∠ace是同位有,它们分别是由直线ab、cd被直线be截成的和直线ab、ac被直线be截成的。123本文来源:https://jiaoan.jxxyjl.com/banianjishuxuejiaoan/1900.html
-
中心对称和中心对称图形的区别_中心对称和中心对称图形详细阅读
教学建议 知识归纳 1.中心对称 把一个图形绕着某一点旋转 ,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形关于点对称也称中心对称,这两个图形中的对应点,叫做关于中心的对称点. 中心对称的两个图形具有如下性质:(1)关于中心对称的两个图形全等;(2)关于中...
-
[等腰三角形的判定]等腰三角形的判定详细阅读
知识结构: 重点与难点分析: 本节内容的重点是定理 本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点 推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关...
-
相似三角形的性质_相似三角形的性质 (第2课时)详细阅读
(第2课时) 一、教学目标 1.掌握相似三角形的性质定理2、3. 2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题. 3.进一步培养学生类比的教学思想. 4.通过相似性质的学习,感受图形和语言的和谐美 二、教法引导 先学后教,达标导学 三、重点及难点 1.教学重点:是性质定理的应用...
-
【二次根式的乘法】二次根式的乘法详细阅读
教学建议 知识结构: 重点难点分析: 本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简 积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础 二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起 本节难...
-
基本作图|基本作图详细阅读
教学目标 : 1、知识目标: (1)要掌握尺规作图的方法及一般步骤; (2)掌握五种,明确尺规作图的意义。 2、能力目标: (1)通过“作图题”练习,提高学生的几何语言表达能力; (2)通过画图,培养学生的作图能力及动手能力 3、情感目标: (1)体验数学语言的简洁严谨。 (2)体会数学作图语言和...
-
[二次根式的混合运算]二次根式的混合运算详细阅读
教学建议 知识结构 重难点分析 本节课的重点是二次根式的加、减、乘、除、乘方、开方的混合运算及分母有理化。它是以二次根式的概念和性质为基础,同时又紧密地联系着整式、分式的运算,也可以说它是运算问题在初中阶段一次总结性,提高性综合学习;二次根式的运算和有理化的方法与技巧,能够进一步开拓学生的解题思路...
-
多边形的内角和|多边形的内角和 教学设计示例3详细阅读
一、素质教育目标 (一)知识教学点 1.使学生掌握四边形的有关概念及四边形的内角和外角和定理. 2.了解四边形的不稳定性及它在实际生产,生活中的应用. (二)能力训练点 1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力. 2.通过推导四边形内角和定理,对学生渗透化归思想....
-
平行四边形的判定|平行四边形的判定 (第二课时)详细阅读
七、教学步骤 【引入新课】 由的定义和性质易得且,即“平行且相等”记为,反过来当时,四边形必为平行四边形,这就是今天要讲的判定定理4(写出课题). 【讲解新课】 (1)平行四边形的判定定理4:一组对边平行且相等的四边形是平行四边形. 引导学生结合图1,把已知,求证具体化. 分析:因为已知,所以只须...
-
[相似三角形的判定]相似三角形详细阅读
教学建议 知识结构 本节首先给出了的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理 重难点分析 的概念是本节的重点也是本节的难点 是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究比研究全等三角形更具有一般性 ...
-
【最简二次根式】最简二次根式 教学设计示例5详细阅读
教学目标 1.使学生进一步理解最简二次根式的概念; 2.较熟练地掌握把一个式子化为最简二次根式的方法. 教学重点和难点 重点:较熟练地把二次根式化为最简二次根式. 难点:把被开方数是多项式和分式的二次根式化为最简二次根式. 教学过程设计 一、复习 1.把下列各式化为最简二次根式: 请说出第(3),...