《生活中的旋转》教案|《生活中的旋转》(省优质课比赛教案)
【jiaoan.jxxyjl.com--八年级数学教案】
(一)教学知识点一、课程目标 1、旋转的定义 2、旋转的基本性质 (二)能力训练要求1、通过具体实例认识旋转,理解旋转的基本涵义 2、探索旋转的基本性质,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质。 (三)情感与价值观要求1、经历对生活中与旋转现象有关的图形进行观察、分析、欣赏等过程,发展初步的审美能力,增强对图形欣赏的意识; 2、通过学习使学生能用数学的眼光看待生活中的问题,进一步发展学生的数学观。 二、教学重难点、1、教学重点旋转的基本性质 2、教学难点探索旋转的基本性质 三、教学组织与教材处理在教学过程中一如既往的开展“新、行、省、信”四字教育模式的教学。 新:创设新的情境(生活中几个典型的旋转现象)、开展新的学习方式(自主欣赏、合作交流、发散分析)、进行新的评价体系(个人评价与小组评价相结合); 行:在教师的启发引导下自主、合作探究新知(旋转的涵义和基本性质),教师关注学生是否积极思考问题(由旋转现象得出基本性质)、是否主动参与讨论(运用旋转分析)、是否敢于发表自己的见解(分析图案的形成过程时“基本图案”的多样性); 省:在旋转实例的基础上观察、归纳、概括旋转的涵义与基本性质,在实例讲解和自主练习的基础上总结心得、反省得失(如:在“做一做”后引导学生在复杂图形中善于抓住“基本图案”进行分析)。 信:在本节课的图形欣赏与实例探究中体验成功,增添兴趣,树立学习信心。同时本节课在“议一议”中由实例探究旋转的基本性质时,教师应给学生充分的思考和交流的时间。在“做一做”中分析图形的变化,找“基本图案”时,鼓励学生发散思考,寻找独特的基本图案。另外利用多媒体来辅助教学,使教学内容直观形象化,使学生在比较真实的环境里面体验数学的生活性。 四、教学流程(一)引入新知---新1、师:在日常生活中我们经常见到以下情景:(课件逐一演示)钟表指针的转动、水车打水、荡秋千、风扇的转动。学生逐一欣赏这些情景后,教师出示问题。 2、师:(课件演示钟表、风扇、扳手的转动)接下来,请大家想一想:(1)上面情境中的转动现象,有什么共同特征?(2)钟表的指针在转动过程中,其形状、大小、位置是否发生变化?电扇的扇叶、应用中的扳手在转动过程中,其形状、大小、位置是否发生变化?教师引导学生观察三副图的变化,发表自己的看法。如:在这些转动的现象中,它们都是绕着一个点转动的;每个物体的转动都是向同一个方向转动;钟表、风扇、扳手的转动,它们的形状、大小没有变化,只是它们的位置有所变化。 3、师:同学们观察得很仔细,我们把这样的转动叫旋转。这节课我们就来一起探讨生活中的旋转。 (二)探究新知---行1、旋转的定义:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。这个定点称为旋转中心,转动的角称为旋转角。旋转不改变图形的大小和形状。注:“将一个图形绕一个定点沿某个方向转动一个角度”意味着图形上的每个点同时按相同方式转动相同的角度。 2、比较平移与旋转的异同(从运动的方向和运动的距离两个方面比较) 3、探究旋转的基本性质如图所示,如果把钟表的指针看作四边形aobc,它绕o点按顺时针方向旋转得到四边形doef.在这个旋转过程中: 1.经过旋转,点a和b分别移动到什么位置? 2.ao与do的长有什么关系?bo与eo呢? 3.旋转中心是什么?旋转角是什么?4.∠aod与∠boe有什么大小关系?注:此处应给学生充分的思考时间,并鼓励学生大胆说出自己的见解。在学生回答问题时,教师关注学生的思考方向、语言表达。如:在回答ao与do的长有什么关系时,我们可以引导学生根据“旋转不改变图形的大小和形状”来用语言表达为:我们可以把ao看作指针,ao旋转到了do,指针的形状和大小没有发生变化,因此ao=do。在回答旋转角时,可以引导学生有好几个角都可以是旋转角如:∠aod与∠boe。在回答∠aod与∠boe有什么大小关系时可以引导学生用“旋转是图形上的每个点同时按相同方式转动相同的角度”来说明,也可以引导学生用∠aob与∠doe加上一个公共角∠bod来说明。 (三)发现新知---省1231、旋转的基本性质:经过旋转,图形上的每一个点都绕旋转中心沿相同方向转动了相同的角度。任意一对对应点与旋转中心所连的角都是旋转角。对应点到旋转中心的距离相等。注:在总结旋转的基本性质时,师引导学生运用“对应点”的思路进行总结。如:因为o是旋转中心,点a与点d是对应点,且ao=do,bo=eo,所以有:对应点与旋转中心所连的线段的长度相等。因为点a与点d是对应点,点b与点e是对应点,且aod=∠boe,所以有:对应点与旋转中心的连线所成的角是相等的,且都是旋转角。 (四)运用新知---信1、例1 钟表的分针匀速旋转一周需要60分. (1)指出它的旋转中心; (2)经过20分,分针旋转了多少度?注:此例意在引导学生关注生活中的旋转并用旋转的知识进行解答。教学时把主动权交给学生,让学生独立思考完成。 2、勇闯三关(1)第一关 1.图案可以看作是一个菱形通过几次旋转得到的? 2.第一次旋转了几度角? 3.第二次旋转了几度角? 4.每一次分别旋转了几度角? 5.它的旋转中心是什么? 6.用“旋转”来分析图案的形成过程.类似平移,你能完整的描述出来吗?注:此关限定在“一个菱形”通过“问题分解”整体把握图形的形成过程。(2)第二关用“旋转”来分析图案的形成过程. 2.如图:基本图案是: ,“旋转中心是: , 旋转角是: 。注:此关意在把握“旋转中心” (3)第三关用“旋转”来分析图案的形成过程. 3.如图:是由 为基本图案,绕 旋转 次得到.旋转角分别是: 。注:此关意在初步发散寻找不同的“基本图案”。总的来讲通过逐步深入,巩固对“旋转性质”的理解和运用,同时为下面开展稍复杂的“做一做”打下伏笔和基础。 3、挑战自我如图:正方形abcd与正方形efgh边长相等,这个图案可以看作是由 为基本图案,绕 旋转 次得到. 旋转角分别是: 。注:此处意在再次发散学生的思维,通过找不同的“基本图案”提升学生的观察能力和分析能力。此题的“基本图案”有很多。如:正方形abcd,△abd,△foe等。在教学时应给学生充分的思考时间和合作交流的时间。教师应表彰学生独特的见解。 (五)谈一谈---你学到了什么?123教师先让学生谈这节课的得与失、经验与困惑等等。再教师引导学生一起总结。 1、旋转的基本特征;2、分析图案的形成过程关键是抓住“基本图案”进行分析。 (六)看一看---欣赏两组典型图案师课件展示两组生活中常见的美观图案,这些图案基本都用到了旋转的知识,以次激发学生学习兴趣,引导学生关注生活并尝试用所学的数学知识去解释。 (七)课后作业1、课本相关作业 2、预习“简单的旋转作图”。附:“新、行、省、信”
------------我的四字教育法 一、“新”1、新的教学理念(“春风不让一木枯”); 2、新的学习方式(“自主、合作、交流、探究”); 3、新的评价体系(制定《成长档案袋》内设“单元知识总结”、“自己独特的解法”、“提出挑战性问题”、“探究性活动记录”、“自我评价与小组评价”,从而动态、全方位评价学生)。 二、“行”1、有品行(引导学生养成良好的数学学习习惯和培养良好的情感与价值观); 2、有行动(培养学生主动探究、参与合作和交流的意识)。 三、“省”1、 及时引导学生反省与《课程标准》要求的“知识技能、过程与方法、情感与价值观”“三维目标”的不足、偏差; 2、注重培养学生的批判意识和怀疑精神,鼓励学生对书本的质疑和对教师的超越。 四、“信”1、培养和增强学生学好数学的信心,并坚定学习数学的信念,从而培养学生乐于思考、勤于探究的意识和习惯; 2、教师及时赞赏学生独特性和富有个性化的理解和表达。
123本文来源:https://jiaoan.jxxyjl.com/banianjishuxuejiaoan/1897.html
-
中心对称和中心对称图形的区别_中心对称和中心对称图形详细阅读
教学建议 知识归纳 1.中心对称 把一个图形绕着某一点旋转 ,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形关于点对称也称中心对称,这两个图形中的对应点,叫做关于中心的对称点. 中心对称的两个图形具有如下性质:(1)关于中心对称的两个图形全等;(2)关于中...
-
[等腰三角形的判定]等腰三角形的判定详细阅读
知识结构: 重点与难点分析: 本节内容的重点是定理 本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点 推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关...
-
相似三角形的性质_相似三角形的性质 (第2课时)详细阅读
(第2课时) 一、教学目标 1.掌握相似三角形的性质定理2、3. 2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题. 3.进一步培养学生类比的教学思想. 4.通过相似性质的学习,感受图形和语言的和谐美 二、教法引导 先学后教,达标导学 三、重点及难点 1.教学重点:是性质定理的应用...
-
【二次根式的乘法】二次根式的乘法详细阅读
教学建议 知识结构: 重点难点分析: 本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简 积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础 二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起 本节难...
-
基本作图|基本作图详细阅读
教学目标 : 1、知识目标: (1)要掌握尺规作图的方法及一般步骤; (2)掌握五种,明确尺规作图的意义。 2、能力目标: (1)通过“作图题”练习,提高学生的几何语言表达能力; (2)通过画图,培养学生的作图能力及动手能力 3、情感目标: (1)体验数学语言的简洁严谨。 (2)体会数学作图语言和...
-
[二次根式的混合运算]二次根式的混合运算详细阅读
教学建议 知识结构 重难点分析 本节课的重点是二次根式的加、减、乘、除、乘方、开方的混合运算及分母有理化。它是以二次根式的概念和性质为基础,同时又紧密地联系着整式、分式的运算,也可以说它是运算问题在初中阶段一次总结性,提高性综合学习;二次根式的运算和有理化的方法与技巧,能够进一步开拓学生的解题思路...
-
多边形的内角和|多边形的内角和 教学设计示例3详细阅读
一、素质教育目标 (一)知识教学点 1.使学生掌握四边形的有关概念及四边形的内角和外角和定理. 2.了解四边形的不稳定性及它在实际生产,生活中的应用. (二)能力训练点 1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力. 2.通过推导四边形内角和定理,对学生渗透化归思想....
-
平行四边形的判定|平行四边形的判定 (第二课时)详细阅读
七、教学步骤 【引入新课】 由的定义和性质易得且,即“平行且相等”记为,反过来当时,四边形必为平行四边形,这就是今天要讲的判定定理4(写出课题). 【讲解新课】 (1)平行四边形的判定定理4:一组对边平行且相等的四边形是平行四边形. 引导学生结合图1,把已知,求证具体化. 分析:因为已知,所以只须...
-
[相似三角形的判定]相似三角形详细阅读
教学建议 知识结构 本节首先给出了的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理 重难点分析 的概念是本节的重点也是本节的难点 是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究比研究全等三角形更具有一般性 ...
-
【最简二次根式】最简二次根式 教学设计示例5详细阅读
教学目标 1.使学生进一步理解最简二次根式的概念; 2.较熟练地掌握把一个式子化为最简二次根式的方法. 教学重点和难点 重点:较熟练地把二次根式化为最简二次根式. 难点:把被开方数是多项式和分式的二次根式化为最简二次根式. 教学过程设计 一、复习 1.把下列各式化为最简二次根式: 请说出第(3),...