最简二次根式_最简二次根式 教学设计示例3
【jiaoan.jxxyjl.com--八年级数学教案】
一、教学目标1.使学生知道什么是最简二次根式,遇到实际式子能够判断是不是最简二次根式.
2.使学生掌握化简一个二次根式成最简二次根式的方法.
3.使学生了解把二次根式化简成最简二次根式在实际问题中的应用.
二、教学重点和难点
1.重点:能够把所给的二次根式,化成最简二次根式.
2.难点:正确运用化一个二次根式成为最简二次根式的方法.
三、教学方法
通过实际运算的例子,引出最简二次根式的概念,再通过解题实践,总结归纳化简二次根式的方法.
四、教学手段
利用投影仪.
五、教学过程
(一)引入新课
提出问题:如果一个正方形的面积是0.5m2,那么它的边长是多少?能不能求出它的近似值?
了.这样会给解决实际问题带来方便.
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数.
总结满足什么样的条件是最简二次根式.即:满足下列两个条件的二次根式,叫做最简二次根式:
1.被开方数的因数是整数,因式是整式.
2.被开方数中不含能开得尽方的因数或因式.
例1 指出下列根式中的最简二次根式,并说明为什么.
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式.前面二次根式的运算结果也都是最简二次根式.
例2 把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简.
例3 把下列各式化简成最简二次根式:
说明:
1.引导学生观察例题3中二次根式的特点,即被开方数是分数或分式,再启发学生总结这类题化简的方法,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化化简.
2.要提问学生
问题,通过这个小题使学生明确如何使用化简中的条件.
通过例2、例3总结把一个二次根式化成最简二次根式的两种情况,并引导学生小结应该注意的问题.
注意:
①化简时,一般需要把被开方数分解因数或分解因式.
②当一个式子的分母中含有二次根式时,一般应该把它化简成分母中不含二次根式的式子,也就是把它的分母进行有理化.
(三)小结
1.满足什么条件的根式是最简二次根式.
2.把一个二次根式化成最简二次根式的主要方法.
(四)练习
1.指出下列各式中的最简二次根式:
2.把下列各式化成最简二次根式:
六、作业
教材P.187习题11.4;A组1;B组1.
七、板书设计
本文来源:https://jiaoan.jxxyjl.com/banianjishuxuejiaoan/2388.html
-
分式的加减法_分式的加减法详细阅读
教学目标: (1)理解通分的意义,理解最简公分母的意义; (2)掌握分式的通分法则,能熟练掌握通分运算。 教学重点:分式通分的理解和掌握。 教学难点:分式通分中最简公分母的确定。 教学工具:投影仪 教学方法:启发式、讨论式 教学过程: (一)引入 (1)如何计算: 由此让学生复习分数通分的意义、通分...
-
分式的基本性质|分式的基本性质详细阅读
第一课时 (一)教学过程 【复习提问】 1.分式的定义? 2.分数的基本性质?有什么用途? 【新课】 1.类比分数的基本性质,由学生小结出: 分式的分子与分母乘以(或除以)同一个不等于零的整式,分式的值不变,即: , (其中是不等于零的整式.) 2.加深对分式基本性质的理解: 例1 下列等式的右边...
-
三角形全等的判定3教学反思|三角形全等的判定3详细阅读
课题:三角形全等的判定(三) 教学目标: 1、知识目标: (1)掌握已知三边画三角形的方法; (2)掌握边边边公理,能用边边边公理证明两个三角形全等; (3)会添加较明显的辅助线 2、能力目标: (1)通过尺规作图使学生得到技能的训练; (2)通过公理的初步应用,初步培养学生的逻辑推理能力 3、...
-
【四边形的内角和是多少度】四边形详细阅读
教学建议 1.教材分析 (1)知识结构: (2)重点和难点分析: 重点:的有关概念及内角和定理 因为的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用 难点:的概念及不稳定性的理解和应用 在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就...
-
平行四边形及其性质_平行四边形及其性质详细阅读
教学建议 1.知识结构 2.重点和难点分析 重点:本节的重点是平行四边形的概念和性质 虽然平行四边形的概念在小学学过,但对于概念本质属性的理解并不深刻,为了加深学生对概念的理解,为以后学习特殊的平行四边形打下基础,所以教师不要忽视平行四边形的概念教学 平行四边形的性质是以后证明四边形问题的基础,也是...
-
用计算器求平方根怎么求_用计算器求平方根详细阅读
教学设计示例 一.教学目标 1 会用计算器求数的平方根; 2 通过用计算器求值及近似值计算,提高学生的运算能力和动手能力; 3 通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习知识的兴趣 二.教学重点与难点 教学重点:用计算器求一个正数的平方根的程序 教学难点 :准确用计算器求解一个...
-
[数学作图题]作图题举例详细阅读
(1)知识结构 重点与难点分析 本节内容的重点是根据基本作图作出符合要求的几何图形。几何作图题同一般画图题不同,它规定只准用直尺和圆规为工具,而且每一步作图都必须有根有据,这样有助于培养学生的逻辑推理能力;另外,以后复杂的作图题常用基本作图中的三角形作基础,通过三角形来完成。 本节内容的难点是如何...
-
[含字母系数的一元一次方程题目]含字母系数的一元一次方程详细阅读
教学目标 1.使学生正确认识含有字母系数的一元一次方程. 2.使学生掌握含有字母系数的一元一次方程的解法. 3.使学生会进行简单的公式变形. 4.培养学生由特殊到一般、由一般到特殊的逻辑思维能力.5.通过公式变形例题,培养学生解决实际问题的能力,激发学生的求知欲望和学习兴趣. 教学重点: (1)含有...
-
三角形全等的判定2教案|三角形全等的判定2详细阅读
课题:全等三角形的判定(二) 教学目标: 1、知识目标: (1)熟记角边角公理、角角边推论的内容; (2)能应用角边角公理及其推论证明两个三角形全等 2、能力目标: (1)通过“角边角”公理及其推论的运用,提高学生的逻辑思维能力; (2)通过观察几何图形,培养学生的识图能力 3、情感目标: (1...
-
三角形全等的判定1教学反思|三角形全等的判定1详细阅读
课题:全等三角形的判定(一) 教学目标 : 1、知识目标: (1)熟记边角边公理的内容; (2)能应用边角边公理证明两个三角形全等 2、能力目标: (1) 通过“边角边”公理的运用,提高学生的逻辑思维能力; (2) 通过观察几何图形,培养学生的识图能力 3、情感目标: (1) 通过几何证明的教学...