[矩形]矩形
【jiaoan.jxxyjl.com--八年级数学教案】
教学建议
知识结构
重难点分析
本节的重点是的性质和判定定理。是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一个角是直角”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。
本节的难点是性质的灵活应用。由于是特殊的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。如果得到一个平行四边形是,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措,教师在教学过程中应给予足够重视。
教法建议
根据本节内容的特点和与平行四边形的关系,建议教师在教学过程中注意以下问题:
1.的知识,学生在小学时接触过一些,可由小学学过的知识作为引入。
2.在现实中的实例较多,在讲解的性质和判定时,教师可自行准备或由学生准备一些生活实例来进行判别应用了哪些性质和判定,既增加了学生的参与感又巩固了所学的知识.
3. 如果条件允许,教师在讲授这节内容前,可指导学生按照教材145页图4-30所示,制作一个平行四边形作为教学过程中的道具,既增强了学生的动手能力和参与感,有在教学中有切实的体例,使学生对知识的掌握更轻松些.
4. 在对性质的讲解中,教师可将学生分成若干组,每个学生分别对事先准备后的图形进行边、角、对角线的测量,然后在组内进行整理、归纳.
5. 由于的性质定理证明比较简单,教师可引导学生分析思路,由学生来进行具体的证明.
6.在性质应用讲解中,为便于理解掌握,教师要注意题目的层次安排。
教学设计
教学目标
1.知道的定义和与平行四边形之间的联系;能说出的四个角都是直角和的的对角线相等的性质;能推出直角三角形斜边上的中线等于斜边的一半的性质。
2.能运用以上性质进行简单的证明和计算。
此外,从与平行四边形的区别与联系中,体会特殊与一般的关系,渗透集合的思想,培养学生辨证唯物主义观点。
引导性材料
想一想:一般四边形与平行四边形之间的相互关系?在图4.5-l的圆圈中填上“四边形”和“平行四边形”的字样来说明这种关系:即平行四边形是特殊的四边形,又具有一般四边形的一切性质;具有一些特殊的性质。
小学里已学过长方形,即。显然,是平行四边形,而且还具有四个角都是直角(小学里已学过)等特殊性质,那么,如果在图4.5-1中再画一个圈表示,这个圈应画在哪里?
(让学生初步感知与平行四边形的从属关系。)
演示:用四根木条制作一个平行四边形教具。利用平行四边形的不稳定性,演示如图4.5-2,当平行四边形的一个内角由锐角变为钝角的过程中,会发生怎样的特殊情况,这时的图形是什么图形()。
问题1:从上面的演示过程,可以发现:平行四边形具备什么条件时,就成了?
说明与建议:教师的演示应充分展现变化过程,从而让学生深切地感受到短形是无数个平行四边形中的一个特例,同时,又使学生能正确地给出的定义。
问题2:是特殊的平行四边形,它除了“有一个角是直角”以外,还可能具有哪些平行四边形所没有的特殊性质呢?
说明与建议:让学生分组探索,有必要时,教师可引导学生,根据研究平行四边形获得的经验,分别从边、角、对角线三个方面探索的特性,还可提醒学生,这种探索的基础是“有一个角是直角”的四个角都相等(性质定理1),要学生给以证明(即课本例1后练习第1题)。
学生能探索得出“的邻边互相垂直”的特性,教师可作说明:这与的四个角是直角本质上是一致的,所以不必另列为一个性质。
学生探索的四条对角线的大小关系时,如有困难,可引导学生测量并比较两条对角线的长度,然后加以证明,得出性质定理2。
问题3:的一条对角线把分成两个直角三角形,的对角线既互相平分又相等,由此,我们可以得到直角三角形的什么重要性质?
说明与建议:(1)让学生先观察图4.5-3,并议论猜想,如学生有困难,教师可引导学生观察图中的一个直角三角形(如Rt△ABC),让学生自己发现斜边上的中线BO与斜线AC的大小关系,然后让学生自己给出如下证明:
证明:在ABCD中,对角线AC、BD相交于点O,AC=BD(的对角线相等)。
,AO=CO
∴在Rt△ABC中,BO是斜边AC上的中线,且 。
∴直角三角形斜边上的中线等于斜边的一半。
例题解析
例1:(即课本例1)
说明:本题难度不大,又有助于学生加深对性质定理的理解,教学中应引导学生探索解法:
如图4.5-4,欲求对角线BD的长,由于∠BAD=90°,AB=4cm,则只要再找出Rt△ABD中一条直角边的长,或一个锐角的度数,再从已知条件∠AOD=120°出发,应用的性质可知,∠ADB=30°,另外,还可以引导学生探究△AOB是什么特殊的三角形(等边三角形),课本用了第一种解法,并给出了解几何计算题书写格式的示范;第二种解法如下:
∵四边形ABCD是,
∴AC=BD(的对角线相等)。
又 。
∴OA=BO,△AOB是等腰三角形,
∵∠AOD=120°,∴∠AOB=180°- 120°=60°
∴∠AOB是等边三角形。
∴ BO=AB=4cm,
∴ BD=2BO=24×4cm=8cm。
例2:(补充例题)
已知:如图4.5-5四边形ABCD中,∠ABC=∠ADC=90°, E是AC的中点,EF平分∠BED交BD于点F。
(l)猜想:EF与BD具有怎样的关系?
(2)试证明你的猜想。
解:(l)EF垂直平分BD。
(2)证明:∵∠ABC=90°,点E是AC的中点。
∴ (直角三角形的斜边上的中线等于斜边的一半)。
同理: 。
∴BE=DE。
又∵EF平分∠BED。
∴EF⊥BD,BF=DF。
说明:本例是一道不给出“结论”,需要学生自己观察---猜想---讨论的几何命题,有助于发展学生的推理(包括合情推理和逻辑推理)能力。如果学生不适应,或有困难,教师可根据实际情况加以引导,这种训练,重要的不是猜对了没有?证明了没有?而是让学生经历这样一种自己研究图形性质的过程,顺便指出:求解本题的重要基础是识图技能----能从复杂图形中分解出如图4.5-6所示的三个基本图形。
课堂练习
1.课本例1后练习题第2题。
2.课本例1后练习题第4题。
小结
1.的定义:
2.归纳总结的性质:
对边平行且相等
四个角都是直角
对角线平行且相等
3.直角三角形斜边上的中线等于斜边的一半。
4.的一条对角线把分成两个全等的直角三角形;的两条对角线把分成四个全等的等腰三角形。因此,有关的问题往往可化为直角三角形或等腰三角形的问题来解决。
作业
l.课本习题4.3A组第2题。
2.课本复习题四A组第6、7题。
本文来源:https://jiaoan.jxxyjl.com/banianjishuxuejiaoan/2205.html
-
[立方根公式]立方根详细阅读
一、教学目标 1 了解和开立方的概念; 2 会用根号表示一个数的,掌握开立方运算; 3 培养学生用类比的思想求的运算能力; 4 由立方与的教学,渗透数学的转化思想; 5 通过符号的引入体验数学的简洁美 二、教学重点和难点 教学重点:的概念与性质. 教学难点:会求某些数的. 三、教学方法 启发式,讲...
-
直角三角形全等的判定_直角三角形全等的判定详细阅读
教学建议 知识结构 重点与难点分析: 本节课教学方法主要是“自学辅导与发现探究法”。力求体现知识结构完整、知识理解完整;注重学生的参与度,在师生共同参与下,探索问题、动手试验、发现规律、做出归纳。让学生直接参加课堂活动,将教与学融为一体。具体说明如下: (1)由“先教后学”转向“先学后教 本节课开...
-
平行四边形的判定|平行四边形的判定 (第二课时)详细阅读
七、教学步骤 【引入新课】 由的定义和性质易得且,即“平行且相等”记为,反过来当时,四边形必为平行四边形,这就是今天要讲的判定定理4(写出课题). 【讲解新课】 (1)平行四边形的判定定理4:一组对边平行且相等的四边形是平行四边形. 引导学生结合图1,把已知,求证具体化. 分析:因为已知,所以只须证...
-
等腰三角形的判定|等腰三角形的判定详细阅读
知识结构: 重点与难点分析: 本节内容的重点是定理 本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点 推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关...
-
分组分解法_分组分解法详细阅读
教学目标 1 使学生掌握分组后能运用提公因式和公式法把多项式分解因式; 2 通过因式分解的综合题的教学,提高学生综合运用知识的能力 教学重点和难点 重点:在中,提公因式法和分式法的综合运用 难点:灵活运用已学过的因式分解的各种方法 教学过程设计 一、复习 把下列各式分解因式,并说明运用了中的什...
-
三角形相似的判定_三角形相似的判定 (第2课时)详细阅读
(第2课时) 一、教学目标 1.使学生了解判定定理2、3的证明方法并会应用. 2.继续渗透和培养学生对类比数学思想的认识和理解. 3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力. 4.通过学习,了解由特殊到一般的唯物辩证法的观点. 二、教学设计 类比学习,探讨发现 三、重点及...
-
三角形相似的判定_三角形相似的判定 (第3课时)详细阅读
(第3课时) 一、教学目标 1.使学生了解直角三角形相似定理的证明方法并会应用. 2.继续渗透和培养学生对类比数学思想的认识和理解. 3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力. 4.通过学习,了解由特殊到一般的唯物辩证法的观点. 二、教学设计 类比学习,探讨发现 三、重...
-
多边形的内角和|多边形的内角和 教学设计示例2详细阅读
一、素质教育目标 (一)知识教学点 1.使学生掌握四边形的有关概念及四边形的内角和外角和定理. 2.了解四边形的不稳定性及它在实际生产,生活中的应用. (二)能力训练点 1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力. 2.通过推导四边形内角和定理,对学生渗透化归思想....
-
二次根式的化简方法讲解_二次根式的化简详细阅读
教学建议 知识结构 重难点分析 本节的重点是 的化简 本章自始至终围绕着与计算进行,而 的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论 本节的难点是正确理解与应用公式 这个公式的...
-
[二次根式的混合运算]二次根式的混合运算详细阅读
教学建议 知识结构 重难点分析 本节课的重点是二次根式的加、减、乘、除、乘方、开方的混合运算及分母有理化。它是以二次根式的概念和性质为基础,同时又紧密地联系着整式、分式的运算,也可以说它是运算问题在初中阶段一次总结性,提高性综合学习;二次根式的运算和有理化的方法与技巧,能够进一步开拓学生的解题思路,...