[1121正负164g]11.2.1正比例函数

八年级数学教案 2012-11-15 网络整理 晴天

【jiaoan.jxxyjl.com--八年级数学教案】

11.2.1  正比例函数

教学目标
    (一)教学知识点
    1.认识正比例函数的意义.
    2.掌握正比例函数解析式特点.
    3.理解正比例函数图象性质及特点.
    4.能利用所学知识解决相关实际问题.
教学重点
    1.理解正比例函数意义及解析式特点.
    2.掌握正比例函数图象的性质特点.
    3.能根据要求完成转化,解决问题.
    教学难点
正比例函数图象性质特点的掌握.
教学过程
    ⅰ.提出问题,创设情境
    一九九六年,鸟类研究者在芬兰给一只燕鸥뼈မ鸟)套上标志环.4个月零1周后人们在2.56万千米外的澳大利亚发现了它.
    1.这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)?
    2.这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?
    3.这只燕鸥飞行1个半月的行程大约是多少千米?
    我们来共同分析:
    一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:
    25600÷(30×4+7)≈200(km)
    若设这只燕鸥每天飞行的路程为200km,那么它的行程y(千米)就是飞行时间x(天)的函数.函数解析式为:
    y=200x(0≤x≤127)
    这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x的值.即
    y=200×45=9000(km)
    以上我们用y=200x对燕鸥在4个月零1周的飞行路程问题进行了刻画.尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型.
    类似于y=200x这种形式的函数在现实世界中还有很多.它们都具备什么样的特征呢?我们这节课就来学习.
    ⅱ.导入新课
    首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点?
    1.圆的周长l随半径r的大小变化而变化.
    2.铁的密度为7.8g/cm3.铁块的质量m(g)随它的体积v(cm3)的大小变化而变化.
    3.每个练习本的厚度为0.5cm.一些练习本摞在一些的总厚度h(cm)随这些练习本的本数n的变化而变化.
    4.冷冻一个0℃的物体,使它每分钟下降2℃.物体的温度t(℃)随冷冻时间t(分)的变化而变化.
    解:1.根据圆的周长公式可得:l=2 r.
    2.依据密度公式p= 可得:m=7.8v.
    3.据题意可知: h=0.5n.
    4.据题意可知:t=-2t.
    我们观察这些函数关系式,不难发现这些函数都是常数与自变量乘积的形式,和y=200x的形式一样.
   
    一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional func-tion),其中k叫做比例系数.123
    我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢?
    [活动一]
    活动内容设计:
    画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点,考虑两个函数的变化规律.
    1.y=2x   2.y=-2x
    活动设计意图:
    通过活动,了解正比例函数图象特点及函数变化规律,让学生自己动手、动口、动脑,经历规律发现的整个过程,从而提高各方面能力及学习兴趣.
    教师活动:
    引导学生正确画图、积极探索、总结规律、准确表述.
    学生活动:
    利用描点法正确地画出两个函数图象,在教师的引导下完成函数变化规律的探究过程,并能准确地表达出,从而加深对规律的理解与认识.
    活动过程与结论:
1.函数y=2x中自变量x可以是任意实数.列表表示几组对应值:
x -3 -2 -1 0 1 2 3
y -6 -4 -2 0 2 4 6

    画出图象如图(1).
2.y=-2x的自变量取值范围可以是全体实数,列表表示几组对应值:
x -3 -2 -1 0 1 2 3
y 6 4 2 0 -2 -4 -6

    画出图象如图(2).
    3.两个图象的共同点:都是经过原点的直线.
    不同点:函数y=2x的图象从左向右呈上升状态,即随着x的增大y也增大;经过第一、三象限.函数y=-2x的图象从左向右呈下降状态,即随x增大y反而减小;经过第二、四象限.
    尝试练习:
    在同一坐标系中,画出下列函数的图象,并对它们进行比较.
1.y= x  2.y=- x

x -6 -4 -2 0 2 4 6
y= x
-3 -2 -1 0 1 2 3
y=- x
3 2 1 0 -1 -2 -3

    比较两个函数图象可以看出:两个图象都是经过原点的直线.函数y= x的图象从左向右上升,经过三、一象限,即随x增大y也增大;函数y=- x的图象从左向右下降,经过二、四象限,即随x增大y反而减小.
    总结归纳正比例函数解析式与图象特征之间的规律:
    正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线.当x>0时,图象经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,图象经过二、四象限,从左向右下降,即随x增大y反而减小.
    正是由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx.
    [活动二]
    活动内容设计:
    经过原点与点(1,k)的直线是哪个函数的图象?画正比例函数的图象时,怎样画最简单?为什么?
    活动设计意图:123
    通过这一活动,让学生利用总结的正比例函数图象特征与解析式的关系,完成由图象到关系式的转化,进一步理解数形结合思想的意义,并掌握正比例函数图象的简单画法及原理.
    教师活动:
    引导学生从正比例函数图象特征及关系式的联系入手,寻求转化的方法.从几何意义上理解分析正比例函数图象的简单画法.
    学生活动:
    在教师引导启发下完成由图象特征到解析式的转化,进一步理解数形结合思想,找出正比例函数图象的简单画法,并知道原由.
    活动过程及结论:
    经过原点与点(1,k)的直线是函数y=kx的图象.
    画正比例函数图象时,只需在原点外再确定一个点,即找出一组满足函数关系式的对应数值即可,如(1,k).因为两点可以确定一条直线.
    ⅲ.随堂练习
    用你认为最简单的方法画出下列函数图象:
    1.y= x    2.y=-3x
    解:除原点外,分别找出适合两个函数关系式的一个点来:
    1.y=  x  (2,3)
2.y=-3x  (1,-3)
 
   小结:
    本节课我们通过实例了解了正比例函数解析式的形式及图象的特征,并掌握图象特征与关系式的联系规律,经过思考、尝试,知道了正比例函数不同表现形式的转化方法,及图象的简单画法,为以后学习一次函数奠定了基础.
   课后作业
    习题11.2─1、2题.
    ⅵ.活动与探究
    某函数具有下面的性质:
    1.它的图象是经过原点的一条直线.
    2.y随x增大反而减小.
    请你举出一个满足上述条件的函数,写出解析式,画出图象.
    解:函数解析式:y=-0.5x
x 0 2
y 0 -1
 
  
    备选题:
    汽车由天津驶往相距120千米的北京,s(千米)表示汽车离开天津的距离,t(小时)表示汽车行驶的时间.如图所示
 
    1.汽车用几小时可到达北京?速度是多少?
    2.汽车行驶1小时,离开天津有多远?
    3.当汽车距北京20千米时,汽车出发了多长时间?
    解法一:用图象解答:
    从图上可以看出4个小时可到达.
    速度= =30(千米/时).
    行驶1小时离开天津约为30千米.
    当汽车距北京20千米时汽车出发了约3.3个小时.
    解法二:用解析式来解答:
    由图象可知:s与t是正比例关系,设s=kt,当t=4时s=120
    即120=k×4  k=30
    ∴s=30t.
    当t=1时  s=30×1=30(千米).
    当s=100时  100=30t  t= (小时).
    以上两种方法比较,用图象法解题直观,用解析式解题准确,各有优特点.毛

123

本文来源:https://jiaoan.jxxyjl.com/banianjishuxuejiaoan/2395.html

  • 中心对称和中心对称图形的区别_中心对称和中心对称图形

    教学建议 知识归纳 1.中心对称 把一个图形绕着某一点旋转 ,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形关于点对称也称中心对称,这两个图形中的对应点,叫做关于中心的对称点. 中心对称的两个图形具有如下性质:(1)关于中心对称的两个图形全等;(2)关于中...

    发布于:2025-11-06

    详细阅读
  • [等腰三角形的判定]等腰三角形的判定

    知识结构: 重点与难点分析: 本节内容的重点是定理 本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点 推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关...

    发布于:2025-11-06

    详细阅读
  • 相似三角形的性质_相似三角形的性质 (第2课时)

    (第2课时) 一、教学目标 1.掌握相似三角形的性质定理2、3. 2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题. 3.进一步培养学生类比的教学思想. 4.通过相似性质的学习,感受图形和语言的和谐美 二、教法引导 先学后教,达标导学 三、重点及难点 1.教学重点:是性质定理的应用...

    发布于:2025-11-06

    详细阅读
  • 【二次根式的乘法】二次根式的乘法

    教学建议 知识结构: 重点难点分析: 本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简 积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础 二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起 本节难...

    发布于:2025-11-06

    详细阅读
  • 基本作图|基本作图

    教学目标 : 1、知识目标: (1)要掌握尺规作图的方法及一般步骤; (2)掌握五种,明确尺规作图的意义。 2、能力目标: (1)通过“作图题”练习,提高学生的几何语言表达能力; (2)通过画图,培养学生的作图能力及动手能力 3、情感目标: (1)体验数学语言的简洁严谨。 (2)体会数学作图语言和...

    发布于:2025-11-06

    详细阅读
  • [二次根式的混合运算]二次根式的混合运算

    教学建议 知识结构 重难点分析 本节课的重点是二次根式的加、减、乘、除、乘方、开方的混合运算及分母有理化。它是以二次根式的概念和性质为基础,同时又紧密地联系着整式、分式的运算,也可以说它是运算问题在初中阶段一次总结性,提高性综合学习;二次根式的运算和有理化的方法与技巧,能够进一步开拓学生的解题思路...

    发布于:2025-11-06

    详细阅读
  • 多边形的内角和|多边形的内角和 教学设计示例3

    一、素质教育目标 (一)知识教学点 1.使学生掌握四边形的有关概念及四边形的内角和外角和定理. 2.了解四边形的不稳定性及它在实际生产,生活中的应用. (二)能力训练点 1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力. 2.通过推导四边形内角和定理,对学生渗透化归思想....

    发布于:2025-11-06

    详细阅读
  • 平行四边形的判定|平行四边形的判定 (第二课时)

    七、教学步骤 【引入新课】 由的定义和性质易得且,即“平行且相等”记为,反过来当时,四边形必为平行四边形,这就是今天要讲的判定定理4(写出课题). 【讲解新课】 (1)平行四边形的判定定理4:一组对边平行且相等的四边形是平行四边形. 引导学生结合图1,把已知,求证具体化. 分析:因为已知,所以只须...

    发布于:2025-11-06

    详细阅读
  • [相似三角形的判定]相似三角形

    教学建议 知识结构 本节首先给出了的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理 重难点分析 的概念是本节的重点也是本节的难点 是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究比研究全等三角形更具有一般性 ...

    发布于:2025-11-06

    详细阅读
  • 【最简二次根式】最简二次根式 教学设计示例5

    教学目标 1.使学生进一步理解最简二次根式的概念; 2.较熟练地掌握把一个式子化为最简二次根式的方法. 教学重点和难点 重点:较熟练地把二次根式化为最简二次根式. 难点:把被开方数是多项式和分式的二次根式化为最简二次根式. 教学过程设计 一、复习 1.把下列各式化为最简二次根式: 请说出第(3),...

    发布于:2025-11-06

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计