切线长定理_切线长定理

九年级数学教案 2016-02-25 网络整理 晴天

【jiaoan.jxxyjl.com--九年级数学教案】

1、教材分析
    (1)知识结构
    (2)重点、难点分析
    重点:切线长定理及其应用.因切线长定理再次体现了圆的轴对称性,它为证实线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点.
    难点:与切线长定理有关的证实和计算问题.如120页练习题中第3题,它不仅应用切线长定理,还用到解方程组的知识,是代数与几何的综合题,学生往往不能很好的把知识连贯起来.
    2、教法建议
    本节内容需要一个课时.
    (1)在教学中,组织学生自主观察、猜想、证实,并深刻剖析切线长定理的基本图形;对重要的结论及时总结;
    (2)在教学中,以“观察——猜想——证实——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学.
    教学目标
    1.理解切线长的概念,把握切线长定理;
    2.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想.
    3.通过对定理的猜想和证实,激发学生的学习爱好,调动学生的学习积极性,树立科学的学习态度.
    教学重点:
    切线长定理是教学重点
    教学难点:
    切线长定理的灵活运用是教学难点
    教学过程设计:
    (一)观察、猜想、证实,形成定理
    1、切线长的概念.
    如图,p是⊙o外一点,pa,pb是⊙o的两条切线,我们把线段pa,pb叫做点p到⊙o的切线长.
    引导学生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.
    2、观察
    利用电脑变动点p 的位置,观察图形的特征和各量之间的关系.
    3、猜想
    引导学生直观判定,猜想图中pa是否等于pb. pa=pb.
    4、证实猜想,形成定理.
    猜想是否正确。需要证实.
    组织学生分析证实方法.关键是作出辅助线oa,ob,要证实pa=pb.
    想一想:根据图形,你还可以得到什么结论?
    ∠opa=∠opb(如图)等.
    切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.
    5、归纳:
    把前面所学的切线的5条性质与切线长定理一起归纳切线的性质
    6、切线长定理的基本图形研究
    如图,pa,pb是⊙o的两条切线,a,b为切点.直线op交⊙o于点d,e,交ap于c
    (1)写出图中所有的垂直关系;
    (2)写出图中所有的全等三角形;
    (3)写出图中所有的相似三角形;
    (4)写出图中所有的等腰三角形.
    说明:对基本图形的深刻研究和熟悉是在学习几何中关键,它是灵活应用知识的基础.123
    (二)应用、归纳、反思
    例1、已知:如图,p为⊙o外一点,pa,pb为⊙o的切线,
    a和b是切点,bc是直径.
    求证:ac∥op.
    分析:从条件想,由p是⊙o外一点,pa、pb为⊙o的切线,a,b是切点可得pa=pb,∠apo=∠bpo,又由条件bc是直径,可得ob=oc,由此联想到与直径有关的定理“垂径定理”和“直径所对的圆周角是直角”等.于是想到可能作辅助线ab.
    从结论想,要证ac∥op,假如连结ab交op于o,转化为证ca⊥ab,op ⊥ab,或从od为△abc的中位线来考虑.也可考虑通过平行线的判定定理来证,可获得多种证法.
    证法一.如图.连结ab.
    pa,pb分别切⊙o于a,b
    ∴pa=pb∠apo=∠bpo
    ∴ op ⊥ab
    又∵bc为⊙o直径
    ∴ac⊥ab
    ∴ac∥op (学生板书)
    证法二.连结ab,交op于d
    pa,pb分别切⊙o于a、b
    ∴pa=pb∠apo=∠bpo
    ∴ad=bd
    又∵bo=do
    ∴od是△abc的中位线
    ∴ac∥op
    证法三.连结ab,设op与ab弧交于点e
    pa,pb分别切⊙o于a、b
    ∴pa=pb
    ∴ op ⊥ab
    ∴ =
    ∴∠c=∠pob
    ∴ac∥op
    反思:教师引导学生比较以上证法,激发学生的学习爱好,培养学生灵活应用知识的能力.
    例2、 圆的外切四边形的两组对边的和相等.
    (分析和解题略)
    反思:(1)例3事实上是圆外切四边形的一个重要性质,请学生记住结论.(2)圆内接四边形的性质:对角互补.
    p120练习:
    练习1填空
    如图,已知⊙o的半径为3厘米,po=6厘米,pa,pb分别切⊙o于a,b,则pa=_______,∠apb=________
    练习2已知:在△abc中,bc=14厘米,ac=9厘米,ab=13厘米,它的内切圆分别和bc,ac,ab切于点d,e,f,求af,ad和ce的长.
    分析:设各切线长af,bd和ce分别为x厘米,y厘米,z厘米.后列出关于x , y,z的方程组,解方程组便可求出结果.
    (解略)
    反思:解这个题时,除了要用三角形内切圆的概念和切线长定理之外,还要用到解方程组的知识,是一道综合性较强的计算题.通过对本题的研究培养学生的综合应用知识的能力.
    (三)小结
    1、提出问题学生归纳
    (1)这节课学习的具体内容;
    (2)学习用的数学思想方法;
    (3)应注重哪些概念之间的区别?
    2、归纳基本图形的结论
    3、学习了用代数方法解决几何问题的思想方法.
    (四)作业
    教材p131习题7.4a组1.(1),2,3,4.b组1题.123
    探究活动
    图中找错
    你能找出(图1)与(图2)的错误所在吗?
    在图2中,p1a为⊙o1和⊙o3的切线、p1b为⊙o1和⊙o2的切线、p2c为⊙o2和⊙o3的切线.
    提示:在图1中,连结pc、pd,则pc、pd都是圆的直径,从圆上一点只能作一条直径,所以此图是一张错图,点o应在圆上.
    在图2中,设p1a=p1b=a,p2b=p2c=b,p3a=p3c=c,则有
    a= p1a= p1p3 p3a= p1p3 c①
    c= p3c= p2p3 p3a= p2p3 b②
    a= p1b= p1p2 p2b= p1p2 b③
    将②代人①式得
    a = p1p3 (p2p3 b)= p1p3 p2p3 b,
    ∴ab= p1p3 p2p3
    由③得ab= p1p2得
    ∴p1p2= p2p3 p1p3
    ∴p1、p 2 、p3应重合,故图2是错误的.123

本文来源:https://jiaoan.jxxyjl.com/jiunianjishuxuejiaoan/38327.html

  • 切线长定理_切线长定理

    1、教材分析 (1)知识结构 (2)重点、难点分析 重点:及其应用.因再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点. 难点:与有关的证明和计算问题.如120页练习题中第3题,它不仅应用,还用到解方程组的知识,是代数...

    发布于:2025-12-29

    详细阅读
  • 一元二次方程根的判别式应用|一元二次方程的根的判别式(一)

    1 知识结构: 2 重点、难点分析 (1)本节的重点是会用判别式判定根的情况 一元二次方程的根的判别式是比较重要的,用它可以判断一元二次方程根的情况,有助于我们顺利地解一元二次方程,也可以利用它进一步学习函数的有关内容,所以,它是本节课的重点 (2)本节的难点是一元二次方程根的三种情况的推导...

    发布于:2025-12-29

    详细阅读
  • [垂直于弦的直径教案]垂直于弦的直径

    第一课时 垂直于弦的直径(一) 教学目标: (1)理解圆的轴对称性及垂径定理的推证过程;能初步应用垂径定理进行计算和证实; (2)进一步培养学生观察问题、分析问题和解决问题的能力; (3)通过圆的对称性,培养学生对数学的审美观,并激发学生对数学的热爱 教学重点、难点:...

    发布于:2025-12-29

    详细阅读
  • 圆和圆的位置关系|圆和圆的位置关系

    1、教材分析 (1)知识结构 (2)重点、难点分析 重点:两圆的位置关系和两圆相交、相切的性质.它们是本节的主要内容,是圆的重要概念性知识,也是今后研究圆与圆问题的基础知识. 难点:两圆位置关系的判定与相交两圆的连心线垂直平分两圆的公共弦的性质的运用.由于两圆位置关系有5种类型,特别是相离有外离和...

    发布于:2025-12-29

    详细阅读
  • 相切约束的作图原理|相切在作图中的应用

    1、教材分析 (1)知识结构 (2)重点、难点分析 重点:使学生理解画“连接”图形的理论依据.它是本节内容的核心,也是今后在实际制图应用中的基础. 难点:①对“连接”图形原理的理解.因为它是应用抽象知识来描述客观问题,学生常常因抽象思维能力较弱,而没有真正理解和掌握;②线段与弧、弧与弧连接时圆心位置...

    发布于:2025-12-29

    详细阅读
  • 二次函数的图像和性质|一次函数的图象和性质

    教学目标 : 1、使学生能进一步理解函数的定义,根据实际情况求函数的定义域,并能利用函数解决实际问题中的最值问题。 2、渗透函数的数学思想,培养学生的数学建模能力,以及解决实际问题的能力。 3、能初步建立应用数学的意识,体会到数学的抽象性和广泛应用性。 教学重点: 1、从实际问题中抽象概括出运动变化...

    发布于:2025-12-29

    详细阅读
  • 【一元二次方程的求根公式】一元二次方程

    教学目标 1. 了解整式方程和的概念;2. 知道的一般形式,会把化成一般形式。3. 通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。教学重点和难点: 重点:的概念和它的一般形式。 难点:对的一般形式的正确理解及其各项系数的确定。教学建议...

    发布于:2025-12-29

    详细阅读
  • 反比例函数及其图象的教学设计_反比例函数及其图象

    教学设计示例1 教学目标 : 1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式; 2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质; 3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想; 4、体会数学从实践中来又到实际中去的研究、应用过程; 5、培养学生的观察能力...

    发布于:2025-12-29

    详细阅读
  • 二次函数的图像和性质_一次函数的图象和性质

    教学目标: 1、使学生能进一步理解函数的定义,根据实际情况求函数的定义域,并能利用函数解决实际问题中的最值问题。 2、渗透函数的数学思想,培养学生的数学建模能力,以及解决实际问题的能力。 3、能初步建立应用数学的意识,体会到数学的抽象性和广泛应用性。 教学重点: 1、从实际问题中抽象概括出运动变化的...

    发布于:2025-12-29

    详细阅读
  • 一次函数|一次函数

    【目的要求】1、使学生初步理解与正比例函数的概念。2、使学生能够根据实际问题中的条件,确定与正比例函数的解析式。【教学重点、难点】以及正比例函数的解析式【教学过程 】一、复习提问: 1、什么是函数? 2、函数有哪几种表示方法?3、举出几个函数的例子。二、新课讲解:可以选用提问时学生举出的...

    发布于:2025-12-29

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计