[高一数学必修一教案人教版]人教版高一数学《指对数的运算》教案

高一数学教案 2015-03-01 网络整理 晴天

【jiaoan.jxxyjl.com--高一数学教案】

指对数的运算
一、反思数学符号:   “ ”“ ”出现的背景
1.数学总是在不断的发明创造中去解决所遇到的问题。
2.方程 的根是多少?;
①.这样的数 存在却无法写出来?怎么办呢?你怎样向别人介绍一个人?     描述出来。
②..那么这个写不出来的数是一个什么样的数呢? 怎样描述呢?
①我们发明了新的公认符号 “ ”作为这样数的“标志”  的形式.即 是一个平方等于三的数.
②推广: 则 .
③后又常用另一种形式分数指数幂形式
3.方程  的根又是多少?① 也存在却无法写出来??同样也发明了新的公认符号 “ ”专门作为这样数的标志,  的形式. 
即 是一个2为底结果等于3的数.        
② 推广: 则 .
二、指对数运算法则及性质:
1.幂的有关概念:
(1)正整数指数幂: =       ( ).                       (2)零指数幂:          ).
(3)负整数指数幂:       (4)正分数指数幂:         
(5)负分数指数幂:         ( 6 )0的正分数指数幂等于0,负分指数幂没意义.
2.根式:
(1)如果一个数的n次方等于a, 那么这个数叫做a的n次方根.如果 ,那么x叫做a的次方根,则x=   (2)0的任何次方根都是0,记作 .  (3) 式子 叫做根式,n叫做根指数,a叫做被开方数.
(4)                . (5)当n为奇数时, =         .   (6)当n为偶数时,  =         =          .
3.指数幂的运算法则:
(1) =    . (2) =    . 3) =     .4) =      .
二.对数
1.对数的定义:如果 ,那么数b叫做以a为底n的对数,记作        ,其中a叫做      ,      叫做真数.
2.特殊对数:
(1) =         ;        (2) =          .   (其中
3.对数的换底公式及对数恒等式
(1) =       (对数恒等式). (2) ;  (3) ;  (4)            .
(5) =     (6) =       .(7) =      .(8) =       ; (9)  =        123
(10)  
三、经典体验:
1.化简根式: ;       ;         ;         
2.解方程: ;       ;        ;      ;
3.化简求值:                                      
 ;                 
4.【徐州六县一区09-10高一期中】16. 求函数 的定义域。

四、经典例题
例:1画出函数草图: .
练习:1. “等式log3x2=2成立”是“等式log3x=1成立”的     ▲      .必要不充分条件
例:2. 若 则       ▲      .
练习:1. 已知函数 求 的值      ▲      ..

例3:函数f(x)=lg( )是         (奇、偶)函数。

点拨:
 为奇函数。

练习:已知 则             .
练习:已知 则 的值等于    .
练习:已知定义域为r的函数 在 是增函数,满足 且 ,求不等式  的解集。
例:4解方程 .
解:设 ,则 ,代入原方程,解得 ,或 (舍去).由 ,得 .经检验知, 为原方程的解.
练习:解方程 .
练习:解方程 .
练习:解方程: .
练习:设 ,求实数 、 的值。

解:原方程等价于 ,显然 ,我们考虑函数 ,显然 ,即 是原方程的根.又 和 都是减函数,故 也是减函数.
当 时, ;当 时, ,因此,原方程只有一个解 .分析:注意到 , ,故倒数换元可求解.
解:原方程两边同除以 ,得 .设 ,原方程化为 ,化简整理,得 . , ,即 . .
 解析:令 ,则 ,∴原方程变形为 ,解得 , 。由 得 ,∴ ,
即 ,∴ ,∴ 。由 得 ,∴ ,∵ ,∴此方程无实根。故原方程的解为 。评注:将指数方程转化为基本型求解,是解决该类问题的关键。
  解析:由题意可得, , ,原方程可化为 ,即 。
  ∴ ,∴ 。
∴由非负数的性质得 ,且 ,∴ , 。
  评注:通过拆项配方,使问题巧妙获解。
例5:已知关于 的方程 有实数解,求 的取值范围。

已知关于 的方程 的实数解在区间 ,求 的取值范围。

反思提炼:1.常见的四种指数方程的一般解法
(1) 方程 的解法:                         
(2) 方程 的解法:                          123
(3) 方程 的解法:                         
(4) 方程 的解法:                        
2.常见的三种对数方程的一般解法
(1)方程 的解法:                         
(2)方程 的解法:                         
(3)方程 的解法:                        
3.方程与函数之间的转化。
4.通过数形结合解决方程有无根的问题。
课后作业:
1.对正整数n,设曲线 在x=2处的切线与y轴交点的纵坐标为 ,则数列 的前n项和的公式是  
[答案] 2n+1-2
[解析] ∵y=xn(1-x),∴y′=(xn)′(1-x)+(1-x)′•xn=n•xn-1(1-x)-xn.
f ′(2)=-n•2n-1-2n=(-n-2)•2n-1.
在点x=2处点的纵坐标为y=-2n.
∴切线方程为y+2n=(-n-2)•2n-1(x-2).
令x=0得,y=(n+1)•2n,
∴an=(n+1)•2n,
∴数列ann+1的前n项和为2(2n-1)2-1=2n+1-2.
2.在平面直角坐标系 中,已知点p是函数 的图象上的动点,该图象在p处的切线 交y轴于点m,过点p作 的垂线交y轴于点n,设线段mn的中点的纵坐标为t,则t的最大值是_____________
解析:设 则 ,过点p作 的垂线
 
 ,所以,t在 上单调增,在 单调减, 。

123

本文来源:https://jiaoan.jxxyjl.com/gaoyishuxuejiaoan/27488.html

  • 【充分条件与必要条件】充分条件与必要条件

    教学目标 (1)正确理解充分条件、必要条件和充要条件的概念; (2)能正确判断是充分条件、必要条件还是充要条件; (3)培养学生的逻辑思维能力及归纳总结能力; (4)在充要条件的教学中,培养等价转化思想. 教学建议(一)教材分析1.知识结构 首先给出推断符号“ ”,并引出的意义,在此基础上讲述了充...

    发布于:2025-12-08

    详细阅读
  • 函数奇偶性知识点归纳|函数单调性与奇偶性

    教学目标 1 了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法 (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念 (2)能从数和形两个角度认识单调性和奇偶性 (3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶...

    发布于:2025-12-08

    详细阅读
  • [数列]数列

    教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项. (1)理解是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解的各种表示方法,理解通项公式是第 项 与项数 的关系式,能根据通项公式写出的前几项,并能根据给出的一...

    发布于:2025-12-08

    详细阅读
  • 一元二次不等式的解法_一元二次不等式的解法

    教学目标 (1)掌握; (2)知道一元二次不等式可以转化为一元一次不等式组; (3)了解简单的分式不等式的解法; (4)能利用二次函数与一元二次方程来求解一元二次不等式,理解它们三者之间的内在联系; (5)能够进行较简单的分类讨论,借助于数轴的直观,求解简单的含字母的一元二次不等式; (6)通过利...

    发布于:2025-12-08

    详细阅读
  • 等比数列的前n项和公式_等比数列的前n项和

    教学目标 1 掌握等比数列前 项和公式,并能运用公式解决简单的问题 (1)理解公式的推导过程,体会转化的思想; (2)用方程的思想认识等比数列前 项和公式,利用公式知三求一;与通项公式结合知三求二; 2 通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想 3 通过公式推导...

    发布于:2025-12-08

    详细阅读
  • 等差数列的前n项和公式_等差数列的前n项和

    教学目标 1 掌握等差数列前 项和的公式,并能运用公式解决简单的问题 (1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及五个字母,已...

    发布于:2025-12-08

    详细阅读
  • 【数列】数列

    教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项. (1)理解是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解的各种表示方法,理解通项公式是第 项 与项数 的关系式,能根据通项公式写出的前几项,并能根据给出的一个的前...

    发布于:2025-12-08

    详细阅读
  • 等差数列求和公式_等差数列

    教学目标 1 理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题 (1)了解公差的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等差中项的概念; (2)正确认识使用的各种表示法,能灵活运用通项公式求的首项、公差、项数、指定的项; (3)能通过通项公式与图像认识的性质,能用...

    发布于:2025-12-08

    详细阅读
  • 等差数列的前n项和公式_等差数列的前n项和

    教学目标 1 掌握等差数列前 项和的公式,并能运用公式解决简单的问题 (1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及...

    发布于:2025-12-08

    详细阅读
  • [交集]交集、并集

    教学目标 : (1)理解交集与并集的概念; (2)掌握有关集合的术语和符号,并会用它们正确表示一些简单的集合; (3)能用图示法表示集合之间的关系; (4)掌握两个较简单集合的的求法; (5)通过对概念的讲解,培养学生观察、比较、分析、概括、等能力,使学生认识由具体到抽象的思维过程; (6)通过对集...

    发布于:2025-12-08

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计