1.1.1算法的概念教案_§1.1.1算法的概念

高一数学教案 2015-03-01 网络整理 晴天

【jiaoan.jxxyjl.com--高一数学教案】

§1.1.1    算法的概念【教学目标】:(1)   了解算法的含义,体会算法的思想。(2)   能够用自然语言叙述算法。(3)   掌握正确的算法应满足的要求。(4)   会写出解线性方程(组)的算法。(5)   会写出一个求有限整数序列中的最大值的算法。【教学重点】算法的含义、解二元一次方程组和判断一个数为质数的算法设计。.【教学难点】把自然语言转化为算法语言。.【学法与教学用具】:学法:1、写出的算法,必须能解决一类问题(如:判断一个整数n(n>1)是否为质数;求任意一个方程的近似解;……),并且能够重复使用。2、要使算法尽量简单、步骤尽量少。
3、要保证算法正确,且计算机能够执行,如:让计算机计算1×2×3×4×5是可以做到的,但让计算机去执行“倒一杯水”“替我理发”等则是做不到的。教学用具:计算机,ti-voyage200图形计算器【教学过程】一、本章章头图说明章头图体现了中国古代数学与现代计算机科学的联系,它们的基础都是“算法”。算法作为一个名词,在中学教科书中并没有出现过,我们在基础教育阶段还没有接触算法概念。但是我们却从小学就开始接触算法,熟悉许多问题的算法。如,做四则运算要先乘除后加减,从里往外脱括弧,竖式笔算等都是算法,至于乘法口诀、珠算口诀更是算法的具体体现。广义地说,算法就是做某一件事的步骤或程序。菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算法,歌谱是一首歌曲的算法。在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序。古代的计算工具:算筹与算盘. 20世纪最伟大的发明:计算机,计算机是强大的实现各种算法的工具。例1:解二元一次方程组:  分析:解二元一次方程组的主要思想是消元的思想,有代入消元和加减消元两种消元的方法,下面用加减消元法写出它的求解过程.解:第一步:② - ①×2,得: 5y=3;             ③    第二步:解③得 ;    第三步:将 代入①,得 .学生探究:对于一般的二元一次方程组来说,上述步骤应该怎样进一步完善?
老师评析:本题的算法是由加减消元法求解的,这个算法也适合一般的二元一次方程组的解法。下面写出求方程组的解的算法:例2:写出求方程组 的解的算法. 解:第一步:②×a1 - ①×a2,得:      ③    第二步:解③得 ;    第三步:将 代入①,得 利用ti-voyage200图形计算器演示:(吸引学生的注意力)  运行结果:(其中输入a1=1,b1=-2,m1=-1,a2=2b2=1,m2=1,当然可输入其它数值)算法概念:    在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.说明:1.“算法”没有一个精确化的定义,教科书只对它作了描述性的说明.2. 算法的特点:(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.123(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.例题讲评:例3、任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判断.分析:(1)质数是只能被1和自身整除的大于1的整数.(2)要判断一个大于1的整数n是否为质数,只要根据质数的定义,用比这个整数小的数去除n,如果它只能被1和本身整除,而不能被其它整数整除,则这个数便是质数.解:算法:第一步:判断n是否等于2.若n=2,则n是质数;若n>2,则执行第二步.第二步:依次从2~(n-1)检验是不是n的因数,即整除n的数.若有这样的数,则n不是质数;若没有这样的数,则n是质数.说明:本算法是用自然语言的形式描述的.设计算法一定要做到以下要求:(1)写出的算法必须能解决一类问题,并且能够重复使用.(2)要使算法尽量简单、步骤尽量少.(3)要保证算法正确,且计算机能够执行.利用ti-voyage200图形计算器演示:(学生已经被吸引住了)运行    例4、.用二分法设计一个求方程 的近似根的算法.分析:该算法实质是求 的近似值的一个最基本的方法.解:设所求近似根与精确解的差的绝对值不超过0.005,算法:第一步:令 .因为 ,所以设x1=1,x2=2.第二步:令 ,判断f(m)是否为0.若是,则m为所求;若否,则继续判断 大于0还是小于0.第三步:若 ,则x1=m;否则,令x2=m.第四步:判断 是否成立?若是,则x1、x2之间的任意值均为满足条件的近似根;若否,则返回第二步.说明:按以上步骤,我们将依次得到课本第4页的表1-1和图1.1-1.于是,开区间(1.4140625,1.41796875)中的实数都满足假设条件的原方程是近似根. 运行结果:练习1:写出解方程x2-2x-3=0的一个算法。解:算法1:第一步:移项,得x2-2x-3=0;                             ①第二步:①式两边同加1并配方,得(x-1)2=4;           ②第三步:②式两边开方,得x-1=±2;                     ③第四步:解③得x=3或x=-1。算法2:第一步:计算方程的判别式判断其符号△=22+4×3=16>0;第二步:将a=1,b=-2,c=-3代入求根公式x=,得x1=3,x2=-1评析:比较两种算法,算法2更简单,步骤少,所以利用公式解决问题是最理想、合算的算法。因此在寻求算法的过程中,首先是利用公式。123下面设计一个求一般的一元二次方程ax2+bx+c=0的根的算法如下:第一步:计算△=b2+4ac;第二步:若△<0;第三步:输出方程无实根;第四步:若△≥0;第五步:计算并输出方程根x1,2=。练习2、求1×3×5×7×9×11的值,写出其算法。
第一步,先求1×3,得到结果3;
第二步,将第一步所得结果3再乘以5,得到结果15;
第三步,再将15乘以7,得到结果105;
第四步,再将105乘以9,得到945;
第五步,再将945乘以11,得到10395,即是最后结果。评析:求解某个问题的算法不同于求解一个具体问题的方法,算法必须能够解决一类问题,并且能够重复使用;算法过程要能一步一步地执行,每一步操作必须确切,能在有限步后得出结果。练习3、有蓝和黑两个墨水瓶,但现在却错把蓝墨水装在了黑墨水瓶中,黑墨水错装在了蓝墨水瓶中,要求将其互换,请你设计算法解决这一问题。分析:由于两个墨水瓶中的墨水不能直接交换,故可以考虑通过引入第三个空墨水瓶的办法进行交换。解:算法步骤如下:第一步:取一只空的墨水瓶,设其为白色;第二步:将黑墨水瓶中的蓝墨水装入白瓶中;第三步:将蓝墨水瓶中的黑墨水装入黑瓶中;第四步:将白瓶中的蓝墨水装入蓝瓶中;第五步:交换结束。评析:对于这种非数值性问题的算法设计问题,应当首先建立过程模型,根据过程设计步骤,完成算法。小结1、算法概念和算法的基本思想(1)算法与一般意义上具体问题的解法的联系与区别;(2)算法的五个特征。2、利用算法的思想和方法解决实际问题,能写出一此简单问题的算法3、两类算法问题(1)数值性计算问题,如:解方程(或方程组),解不等式(或不等式组),套用公式判断性的问题,累加,累乘等一类问题的算法描述,可通过相应的数学模型借助一般数学计算方法,分解成清晰的步骤,使之条理化即可。(2)非数值性计算问题,如:排序、查找、变量变换、文字处理等需先建立过程模型,通过模型进行算法设计与描述。4、利用ti-voyage200图形计算器演示时,开始学生看,想,探究,然后模范、创新。图形计算器为学生创建一个自我发挥的平台。作业: (课本第4页练习)1、任意给定一个正实数,设计一个算法求以这个数为半径的圆的面积.解:算法步骤:第一步:输入任意一个正实数r;第二步:计算以r为半径的圆的面积: ;第三步:输出圆的面积s.2、任意给定一个大于1的正整数n,设计一个算法求出n的所有因数.解:算法步骤:第一步:依次以2~(n-1)为除数去除n,检查余数是否为0.若是,则是n的因数;若不是,则不是n的因数;第二步:在n的因数中加入1和n;第三步:输出n的所有因数.运行结果:(即32的公因数为1,2,4,8,16,32)123

本文来源:https://jiaoan.jxxyjl.com/gaoyishuxuejiaoan/27480.html

  • 【集合】集合

    一、知识结构 本小节首先从初中代数与几何涉及的实例人手,引出与的元素的概念,并且结合实例对的概念作了说明.然后,介绍了的常用表示方法,包括列举法、描述法,还给出了画图表示的例子.二、重点难点分析 这一节的重点是的基本概念和表示方法,难点是运用的三种常用表示方法正确表示一些简单的.这一节的特点是概念多...

    发布于:2015-03-05

    详细阅读
  • 下学期是几月到几月_下学期 5.6平面向量的数量积及运算律1

    (第一课时)一、教学目标 1.正确理解平面向量的数量积的概念,能够运用这一概念求两个向量的数量积,并能根据条件逆用等式求向量的夹角; 2.掌握平面向量的数量积的重要性质,并能运用这些性质解决有关问题; 3.通过平面向量的数量积的重要性质猜想与证明,培养学生的探索精神和严谨的科学态度以及实际动手能力...

    发布于:2015-03-05

    详细阅读
  • [下学期是几月到几月]下学期 4.11 已知三角函数值求角1

    (第一课时)一.教学目标 1.理解反正弦、反余弦、反正切的意义,并会用反三角符号表示角. 2.掌握用反三角表示 中的角.二.教具 直尺、投影仪三.教学过程 1.设置情境 由函数 的定义知,对定义域 中的任一元素 ,在值域 中都有一个元素 使 ,我们知道, 存在反函数时,上述值域 中的元素不仅存在...

    发布于:2015-03-05

    详细阅读
  • 下学期是几月到几月|下学期 4.6 两角和与差的正弦、余弦、正切1

    4.6两角和与差的正弦、余弦、正切(第一课时)(一)教具准备 直尺、圆规、投影仪(二)教学目标 1.掌握 公式的推导,并能用赋值法,求出公式 . 2.应用公式 ,求三角函数值.(三)教学过程 1.设置情境 上一单元我们学习了同一个角的三角函数的性质以及各三角函数之间的相互关系.本节开始讨论两...

    发布于:2015-03-05

    详细阅读
  • 【上学期是几月到几月】上学期 3.4等比数列

    教学目标 1 通过教学使学生理解等比数列的概念,推导并掌握通项公式 2 使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力 3 培养学生勤于思考,实事求是的精神,及严谨的科学态度 教学重点,难点 重点、难点是等比数列的定义的归纳及通项公式的推导 教学用具 投影仪,多媒体软件,电脑 教学...

    发布于:2015-03-04

    详细阅读
  • 下学期是几月到几月_下学期 4.8正弦函数、余弦函数的图像和性质1

    4 8 正弦函数、余弦函数的图像和性质(第一课时) (一)教学具准备 直尺、圆规、投影仪.(二)教学目标 1.了解作正、余弦函数图像的四种常见方法. 2.掌握五点作图法,并会用此方法作出 上的正弦曲线、余弦曲线. 3.会作正弦曲线的图像并由此获得余弦曲线图像.(三)教学过程 (可用课件辅助教学)...

    发布于:2015-03-04

    详细阅读
  • 下学期是几月到几月|下学期 5.4 平面向量的坐标运算2

    (第二课时)一.教学目标 1.熟练掌握向量的坐标运算,并能应用它来解决平面几何的有关问题. 2.会根据平面向量的坐标,判断向量是否共线;二.教学重点 向量共线充要条件的坐标表示及应用. 教学难点 向量与坐标之间的转化.三.教学具准备 直尺、投影仪四.教学过程 1.设置情境 引进直角坐标系后...

    发布于:2015-03-04

    详细阅读
  • 下学期是几月到几月|下学期 4.5 正弦、余弦的诱导公式

    正弦、余弦的诱导公式教学设计示例(一)教学目标 : 1.掌握诱导公式及其推演时过程. 2.会应用诱导公式,进行简单的求值或化简.教学重点: 理解并掌握诱导公式.教学难点 : 运用诱导公式求三角函数值,化简或证明三角函数式.教学用具: 三角板、圆规、投影仪.教学过程 :1.设置情境 我们已经学过了诱导...

    发布于:2015-03-04

    详细阅读
  • [下学期是几月到几月]下学期 5.5 线段的定比分点

    一.教学目标 1.理解点P分有向线段所成的比λ的含义,能确定λ的正负号; 2.掌握有向线段的定比分点和中点的坐标公式,并能熟练运用这两个公式解决实际问题; 3.向学生渗透数形结合的思想,培养学生的思维能力,发现事物间的变化规律 二.教学重点 线段的定比分点和终点的坐标公式的应用. 教学难点...

    发布于:2015-03-04

    详细阅读
  • 【子集】子集、全集、补集

    教学目标 : (1)理解子集、真子集、补集、两个集合相等概念; (2)了解全集、空集的意义, (3)掌握有关的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力; (4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集; (5)能判断两集合间的包含、相等关系,并会用符号...

    发布于:2015-03-04

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计