五属于集合五吗|集合五问

高一数学教案 2015-03-01 网络整理 晴天

【jiaoan.jxxyjl.com--高一数学教案】

                   集合五问                                         集合是现代数学中一个原始的、不加定义的概念。教材上给出“集合”的概念,只是对集合描述性的说明。初次接触集合感到比较抽象,难以把握。实质上,集合元素的三个性质是我们解决集合有关概念问题的重要依据。子集、真子集的定义是解决两个集合之间关系的法宝。下面通过五个问题对同学们容易忽略的知识进行解答,以期对同学们有所帮助。     一问:你已掌握集合概念中所描述的集合的全体性了吗?    例1:函数y=x2+x-1的定义域为(       )。     ①{r}    ②{一切实数}    ③ r     ④{实数}    ⑤ 实数 a ①②                                     b ②③

c ③④                                     d ④⑤                  

    分析:任何一个实数都能使函数y=x2+x-1有意义,故函数的定义域应为全体实数。所以③正确。r与一切实数都表示一个整体,它们是一个集合,放在大括号内是表示以集合为元素的单元素集,所以①②不正确。④表示实数的全体,正确。⑤表示元素,不正确。    答案:c    点评:用符号{}表示集合时,它表示大括号内元素的全体。在表示定义域时,大括号内的元素应是使函数有意义的实数,而不应该是一个集合。     二问:用描述法表示集合时,你注意到代表元素的代表性了吗?    例2:设集合a={x│y=x2-1},b={y│y=x2-1},c={(x,y)│y=x2-1},d={y=x2-1} 分别写出集合a、b、c、d的意义,a表示                ,b表示                ,c表示                ,d表示                。     分析:集合表示的是代表元素的全体,竖线后面表示代表元素满足的条件,故a表示自变量x的全体是函数的定义域,b表示因变量y的全体是函数的值域,c表示满足函数的点的全体是函数的图像,d是用列举法表示以方程y=x2-1为元素的单元素集。     答案:a表示函数的定义域,           b表示函数的值域,           c表示函数的图像,           d表示以方程y=x2-1为元素的单元素集。     点评:集合的代表元素规定了集合的类型。     三问:你注意到集合元素的互异性了吗?12    例3:设集合a={1,3,a},b={1,a2-a+1},若b a,求a的值。     分析:因为b a,所以b中的元素1,a2-a+1都是a中的元素,但是要考虑到元素的互异性。     解答:因为b a,故可分两种情况:     ⑴ 由a2-a+1=3,解得a=-1,。2,经检验符合题意。     ⑵ 由a2-a+1=a,解得a=1,此时a中元素有重复,不满足集合元素的互异性,舍掉a=1。     综上所述:a=-1,或a=2。     点评:集合元素的互异性是检验解出的未知数的值是否符合题意的重要依据。     四问:集合与集合之间不能使用属于符号吗?     例4:设集合a={a,b},b={x│x a},c={x│x a}。      则  b=            , c=                , a     c(填集合a与c的关系)。     分析:因为集合b的代表元素x a,所以x的全体为a、b,故a=b。又因为集合c的代表元素x a,即x是a的子集,所以x的全体为 、{a}、{b}、{a、b}。 解答:b={a,b}, c={ 、{a}、{b}、{a、b}}, a c。     点评:在特殊情况下,一个集合是另一个集合的子集,集合与集合的之间也可以用符号“ ”。     五问:特殊集合 ,你给予格外关注了吗?    例5:已知a={x│x2-2x-3=0},b={x│ax-1=0},若b a,求a的值。     分析:因为b a,所以可分两种情况:b= 和b≠ 进行讨论。     解答:因为a={x│x2-2x-3=0}={-1,3},且b a,

          所以  ⑴当b= ,即方程ax-1=0无解时,a=0。                 ⑵当b ,即b= 时,          若 =-1时,则a=-1,满足b a,          若 =3时,则a= ,满足b a. 综上可知:a=-1或a= 。 点评:当已知b a,千万不要忘记b= 的情况。    12

本文来源:https://jiaoan.jxxyjl.com/gaoyishuxuejiaoan/27485.html

  • 【充分条件与必要条件】充分条件与必要条件

    教学目标 (1)正确理解充分条件、必要条件和充要条件的概念; (2)能正确判断是充分条件、必要条件还是充要条件; (3)培养学生的逻辑思维能力及归纳总结能力; (4)在充要条件的教学中,培养等价转化思想. 教学建议(一)教材分析1.知识结构 首先给出推断符号“ ”,并引出的意义,在此基础上讲述了充...

    发布于:2025-12-08

    详细阅读
  • 函数奇偶性知识点归纳|函数单调性与奇偶性

    教学目标 1 了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法 (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念 (2)能从数和形两个角度认识单调性和奇偶性 (3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶...

    发布于:2025-12-08

    详细阅读
  • [数列]数列

    教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项. (1)理解是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解的各种表示方法,理解通项公式是第 项 与项数 的关系式,能根据通项公式写出的前几项,并能根据给出的一...

    发布于:2025-12-08

    详细阅读
  • 一元二次不等式的解法_一元二次不等式的解法

    教学目标 (1)掌握; (2)知道一元二次不等式可以转化为一元一次不等式组; (3)了解简单的分式不等式的解法; (4)能利用二次函数与一元二次方程来求解一元二次不等式,理解它们三者之间的内在联系; (5)能够进行较简单的分类讨论,借助于数轴的直观,求解简单的含字母的一元二次不等式; (6)通过利...

    发布于:2025-12-08

    详细阅读
  • 等比数列的前n项和公式_等比数列的前n项和

    教学目标 1 掌握等比数列前 项和公式,并能运用公式解决简单的问题 (1)理解公式的推导过程,体会转化的思想; (2)用方程的思想认识等比数列前 项和公式,利用公式知三求一;与通项公式结合知三求二; 2 通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想 3 通过公式推导...

    发布于:2025-12-08

    详细阅读
  • 等差数列的前n项和公式_等差数列的前n项和

    教学目标 1 掌握等差数列前 项和的公式,并能运用公式解决简单的问题 (1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及五个字母,已...

    发布于:2025-12-08

    详细阅读
  • 【数列】数列

    教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项. (1)理解是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解的各种表示方法,理解通项公式是第 项 与项数 的关系式,能根据通项公式写出的前几项,并能根据给出的一个的前...

    发布于:2025-12-08

    详细阅读
  • 等差数列求和公式_等差数列

    教学目标 1 理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题 (1)了解公差的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等差中项的概念; (2)正确认识使用的各种表示法,能灵活运用通项公式求的首项、公差、项数、指定的项; (3)能通过通项公式与图像认识的性质,能用...

    发布于:2025-12-08

    详细阅读
  • 等差数列的前n项和公式_等差数列的前n项和

    教学目标 1 掌握等差数列前 项和的公式,并能运用公式解决简单的问题 (1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及...

    发布于:2025-12-08

    详细阅读
  • [交集]交集、并集

    教学目标 : (1)理解交集与并集的概念; (2)掌握有关集合的术语和符号,并会用它们正确表示一些简单的集合; (3)能用图示法表示集合之间的关系; (4)掌握两个较简单集合的的求法; (5)通过对概念的讲解,培养学生观察、比较、分析、概括、等能力,使学生认识由具体到抽象的思维过程; (6)通过对集...

    发布于:2025-12-08

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计