[下学期是几月到几月]下学期 5.3实数与向量的积2
【jiaoan.jxxyjl.com--高一数学教案】
(第二课时)
一.教学目标
1.了解平面向量基本定理的证明.掌握平面向量基本定理及其应用;
2.能够在解题中适当地选择基底,使其它向量能够用选取的基底表示.
二.教学重点:平面向量基本定理
教学难点 :理解平面向量基本定理.
三.教学具准备
直尺、投影仪.
四.教学过程
1.设置情境
上节课我们学习了共线向量的基本定理,通过它们判定两个向量是否平行,而且共线向量可由该集合中的任一非零向量表示出来.这个非零向量叫基向量.那么平面上的任一向量是否也具有类似属性呢?如果是这样的话,对平面上任一向量的研究就可以化归为对基向量的研究了.
2.探索研究
师:向量 与非零向量 共线的充要条件是什么?
生:有且仅有一个实数 ,使得
师:如何作出向量 ?
生:在平面上任取一点 ,作 , ,则
师:对!我们知道向量 是向量 与 的合成, 、 也可以看做是由向量 的分解,是不是每一个向量都可以分解两个不共线的向量呢?
平面向量基本定理:如果 、 是同一平面内的两个不共线向量,那么对这一平面内的任一向量 ,有且只有一对实数 , 使
我们把不共线的向量 、 叫做表示这一平面内所有向量的一组基底.
说明:①实数 , 的确定是由平面几何作图得到的,同时也应用了上节课的共线向量基本定理.
②对该定理重在使用.
下面看例题
【例1】已知向量 、 ,求作 .
【例2】如图所示, 的两条对角线相交于点 ,且 , ,用 、 表示 、 、 和 ?
解:在 中
∵
∴
说明:①这些表示方法很常用,要熟记
②用向量法讨论几何问题,关键是选取适当的基向量表示其他向量,本题的基底就是 、 ,由它可以“生”成 , ,…….
【例3】如图所示,已知 的两条对角线 与 交于 , 是任意一点,求证
证明:∵ 是对角线 和 的交点
∴ , .在△ 中,
同理:
相加可得:
注:本题也可以取基本向量 , , , ,利用三角形中线公式(向量),得 两种表示方式:
①
②
①+②得 证毕.
【例4】如图所示 、 不共线, ( ),用 , 表示 .
解 ∵
∴
说明:①本题是个重要题型:设 为平面上任一点.
则: 、 、 三点共线
或令 , 则 、 、 三点共线 (其中 )
②当 时, 常称为△ 的中线公式(向量式).
3.演练反馈
(1)命题 :向量 与 共线;命题 :有且只有一个实数 ,使 ;则 是 的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.不充分不必要条件
(2)已知 和 不共线,若 与 共线,则实数 的值等于____________.
(3)如图△ 中,点 是 的中点,点 在边 上,且 , 与 相交于点 ,求 的值.
参考答案:
(1)B (2)
(3)解:(如图)设 , ,则 ,
,∵ 、 、 和 、 、 分别共线,∴存在 、 ,使 , .
故 ,而 .
∴由基本定理得 ∴ ∴ ,即
4.总结提炼
(1)当平面内取定一组基底 , 后,任一向量 都被 、 惟一确定,其含义是存在惟一这数对 ,使 ,则必有 且 .
(2)三点 、 、 共线 (其中 且 )
五.板书设计
-
【充分条件与必要条件】充分条件与必要条件详细阅读
教学目标 (1)正确理解充分条件、必要条件和充要条件的概念; (2)能正确判断是充分条件、必要条件还是充要条件; (3)培养学生的逻辑思维能力及归纳总结能力; (4)在充要条件的教学中,培养等价转化思想. 教学建议(一)教材分析1.知识结构 首先给出推断符号“ ”,并引出的意义,在此基础上讲述了充...
-
函数奇偶性知识点归纳|函数单调性与奇偶性详细阅读
教学目标 1 了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法 (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念 (2)能从数和形两个角度认识单调性和奇偶性 (3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶...
-
[数列]数列详细阅读
教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项. (1)理解是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解的各种表示方法,理解通项公式是第 项 与项数 的关系式,能根据通项公式写出的前几项,并能根据给出的一...
-
一元二次不等式的解法_一元二次不等式的解法详细阅读
教学目标 (1)掌握; (2)知道一元二次不等式可以转化为一元一次不等式组; (3)了解简单的分式不等式的解法; (4)能利用二次函数与一元二次方程来求解一元二次不等式,理解它们三者之间的内在联系; (5)能够进行较简单的分类讨论,借助于数轴的直观,求解简单的含字母的一元二次不等式; (6)通过利...
-
等比数列的前n项和公式_等比数列的前n项和详细阅读
教学目标 1 掌握等比数列前 项和公式,并能运用公式解决简单的问题 (1)理解公式的推导过程,体会转化的思想; (2)用方程的思想认识等比数列前 项和公式,利用公式知三求一;与通项公式结合知三求二; 2 通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想 3 通过公式推导...
-
等差数列的前n项和公式_等差数列的前n项和详细阅读
教学目标 1 掌握等差数列前 项和的公式,并能运用公式解决简单的问题 (1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及五个字母,已...
-
【数列】数列详细阅读
教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项. (1)理解是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解的各种表示方法,理解通项公式是第 项 与项数 的关系式,能根据通项公式写出的前几项,并能根据给出的一个的前...
-
等差数列求和公式_等差数列详细阅读
教学目标 1 理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题 (1)了解公差的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等差中项的概念; (2)正确认识使用的各种表示法,能灵活运用通项公式求的首项、公差、项数、指定的项; (3)能通过通项公式与图像认识的性质,能用...
-
等差数列的前n项和公式_等差数列的前n项和详细阅读
教学目标 1 掌握等差数列前 项和的公式,并能运用公式解决简单的问题 (1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及...
-
[交集]交集、并集详细阅读
教学目标 : (1)理解交集与并集的概念; (2)掌握有关集合的术语和符号,并会用它们正确表示一些简单的集合; (3)能用图示法表示集合之间的关系; (4)掌握两个较简单集合的的求法; (5)通过对概念的讲解,培养学生观察、比较、分析、概括、等能力,使学生认识由具体到抽象的思维过程; (6)通过对集...