下学期是几月到几月|下学期 4.5 正弦、余弦的诱导公式
【jiaoan.jxxyjl.com--高一数学教案】
正弦、余弦的诱导公式教学设计示例(一)
教学目标 :
1.掌握诱导公式及其推演时过程.
2.会应用诱导公式,进行简单的求值或化简.
教学重点:
理解并掌握诱导公式.
教学难点 :
运用诱导公式求三角函数值,化简或证明三角函数式.
教学用具:
三角板、圆规、投影仪.
教学过程 :
1.设置情境
我们已经学过了诱导公式一: , , ,( ),有了它就可以把任一角的三角函数求值问题,转化为 ~ 间角的三角函数值问题.那么能否再把 ~ 间的角的三角函数求值,继续化为我们熟悉的 ~ 间的角的三角函数求值问题呢?如果能的话,那么任意角的三角函数求值,都可以化归为锐角三角函数求值,并通过查表方法而得到最终解决,本课就来讨论这一问题.
2.探索研究
(1)出示下列投影内容
设 ,对于任意一个 到 的角 ,以下四种情形中有且仅有一种成立.
首先讨论 ,其次讨论 , 以及 的三角函数值与 的三角函数值之间的关系,为了使讨论更具一般性,这里假定 为任意角.
(2)学习诱导公式二、三的推导过程.
已知任意角 的终边与单位圆相交于点 ,请同学们思考回答点 关于 轴、 轴、原点对称的三个点的坐标间的关系.
点 关于 轴对称点 ,关于 轴对称点 ,关于原点对称点 (可利用演示课件).
图1由于 角的终边与单位圆交于 ,则 的终边就是角 终边的反向延长线,角 的终边与单位圆的交点为 ,则 是与 关于 对称的点.所以 ,又因单位圆半径 ,由正弦函数、余弦函数定义,可得
于是得到一组公式(公式二)
我们再来研究角 与 的三角函数值之间的关系,如图2,利用单位圆作出任意角 与单位圆相交于点 ,角 的终边与单位圆相交于点 ,这两个角的终边关于 轴对称,所以
∵
∴
于是又得到一组公式(公式三)
【例1】求下列三角函数值:
(1) (2) ;
(3) ;(4) .
解:(1)
(2)
(3)
(4)
【例2】化简:
解:∵
∴ 原式
(3)推导诱导公式四、五
请同学们思考如何利用已学过的诱导公式推导 , 与 的三角函值之间的关系?由诱导公式我们可以得到
:
由此可得公式四、五
公式一、二、三、四、五都叫做诱导公式.概括如下: , , , 的三角函数值,等于 的同名函数值,前面加上一个把 看成锐角时原函数值的符号,简化成“函数名不变,符号看象限”的口诀.
【例3】求下列各三角函数:
(1) ; (2) .
解:(1)
(2)
.
观察以上的解题过程,请同学们总结,利用诱导公式求任意角的三角函数值的步骤.
学生回答后老师总结得出,在求任意角的三角函数值时一般可按以下步骤:
运用诱导公式解题的本质是多次运用“化归”思想方法,化负角为正角,化 到 的角为 到 间的角,再求值的过程.
3.演练反馈(投影仪)
(1)已知 ,求 的值
(2)已知 ,求 的值
(3)已知 ,求 的值
参考答案:
(1)若 为Ⅳ象限角,则
若 为Ⅰ象限角,则
(2)
(3)∵
∴
4.本课小结
(1)求任意角的三角函数式的一般程序:负(角)变正(角)→大(角)变小(角)→(一直)变到 ~ 之间(能查表).
(2)变角是有一定技巧的,如 可写成 ,也可以写成 不同表达方法,决定着使用不同的诱导公式.
(3)凑角方法也体现出很大技巧。如,已知角“ ”,求未知角“ ”,可把 改写成 .
课时作业 :
1.已知 , 是第四象限角,则 的值是( )
A. B. C. D.
2.下列公式正确的是( )
A. B.
C. D.
3. 的成立条件是( )
A. 为不等于 的任意角 B.锐角
C. D. , 且
4.在 中,下列各表达式为常数的是( )
A. B.
C. D.
5.化简
(1)
(2)
6.证明恒等式
参考答案:
1.A; 2.D; 3.D; 4.C; 5.(1)0,(2) ;
6.左
右
-
【充分条件与必要条件】充分条件与必要条件详细阅读
教学目标 (1)正确理解充分条件、必要条件和充要条件的概念; (2)能正确判断是充分条件、必要条件还是充要条件; (3)培养学生的逻辑思维能力及归纳总结能力; (4)在充要条件的教学中,培养等价转化思想. 教学建议(一)教材分析1.知识结构 首先给出推断符号“ ”,并引出的意义,在此基础上讲述了充...
-
函数奇偶性知识点归纳|函数单调性与奇偶性详细阅读
教学目标 1 了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法 (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念 (2)能从数和形两个角度认识单调性和奇偶性 (3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶...
-
[数列]数列详细阅读
教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项. (1)理解是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解的各种表示方法,理解通项公式是第 项 与项数 的关系式,能根据通项公式写出的前几项,并能根据给出的一...
-
一元二次不等式的解法_一元二次不等式的解法详细阅读
教学目标 (1)掌握; (2)知道一元二次不等式可以转化为一元一次不等式组; (3)了解简单的分式不等式的解法; (4)能利用二次函数与一元二次方程来求解一元二次不等式,理解它们三者之间的内在联系; (5)能够进行较简单的分类讨论,借助于数轴的直观,求解简单的含字母的一元二次不等式; (6)通过利...
-
等比数列的前n项和公式_等比数列的前n项和详细阅读
教学目标 1 掌握等比数列前 项和公式,并能运用公式解决简单的问题 (1)理解公式的推导过程,体会转化的思想; (2)用方程的思想认识等比数列前 项和公式,利用公式知三求一;与通项公式结合知三求二; 2 通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想 3 通过公式推导...
-
等差数列的前n项和公式_等差数列的前n项和详细阅读
教学目标 1 掌握等差数列前 项和的公式,并能运用公式解决简单的问题 (1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及五个字母,已...
-
【数列】数列详细阅读
教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项. (1)理解是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解的各种表示方法,理解通项公式是第 项 与项数 的关系式,能根据通项公式写出的前几项,并能根据给出的一个的前...
-
等差数列求和公式_等差数列详细阅读
教学目标 1 理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题 (1)了解公差的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等差中项的概念; (2)正确认识使用的各种表示法,能灵活运用通项公式求的首项、公差、项数、指定的项; (3)能通过通项公式与图像认识的性质,能用...
-
等差数列的前n项和公式_等差数列的前n项和详细阅读
教学目标 1 掌握等差数列前 项和的公式,并能运用公式解决简单的问题 (1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及...
-
[交集]交集、并集详细阅读
教学目标 : (1)理解交集与并集的概念; (2)掌握有关集合的术语和符号,并会用它们正确表示一些简单的集合; (3)能用图示法表示集合之间的关系; (4)掌握两个较简单集合的的求法; (5)通过对概念的讲解,培养学生观察、比较、分析、概括、等能力,使学生认识由具体到抽象的思维过程; (6)通过对集...