【数系的扩充和复数的概念教案】《数系的扩充》高中数学选修2—2教案

高二数学教案 2014-05-31 网络整理 晴天

【jiaoan.jxxyjl.com--高二数学教案】

【目标】
1. 了解实数系扩充的原因和过程,理解虚单位i的概念,理解复数代数形式、实部、虚部、纯虚数、虚数等概念;
2. 理解复数相等概念,了解复数系与实数系的关系;
3. 感受数系的扩充和复数的诞生都是人类思想的创新和大解放,每次都引发对自然界更深层次的认识,推动了科学的进步.
【重点】 复数的诞生及其概念. 复数的分类(实数、虚数、纯虚数)和复数相等.
【难点】.虚单位i 的的概念. 虚单位i 的第二条性质.
【程序】
▲1.问题情境
问题1 自然数集n、整数集z、有理数集q. 实数集r之间有怎样的包含关系呢?
key:   n z,z q,q r,    总之 n   z   q   r,(数系扩充之意自见).
接着问:这些数是怎样产生的?
key:  为了计数产生了自然数,
为了表示各种具有相反意义的量产生了负数;
为了测量等产生了分数
为了度量正方形对角线的长产生了无理数.
发现1:数集在按照某种“规则”不断扩充,(实践的需要、解决数学体系内部矛盾的推动)
数系与运算联系紧密,(数集无运算,犹无弓之箭;运算离开数系,犹如无米之炊).
人们总希望数系中的运算能够在本数系中畅通无阻.
数系的每一次扩充的效果,是解决了在原有数集中某种运算受阻的矛盾,
负数解决了在正数集(如n)中不够减的矛盾,
分数解决了在整数中不能整除的矛盾,
无理数解决了开方开不尽的矛盾.

接着问:数系一般按照什么样的“规则”扩充?
key:   “规则”就是
在原有数系的基础上“添加”新的数.
▲2.实数系也面临着问题(内部矛盾)
数系扩到实数系r以后,因为没有一个实数的平方等于-1.
问题:这表明什么运算在实数系r中不能畅通无阻?(答:开方运算)
从方程的观点看,像x2=-1这样的方程在实数系r还是无解的.
让我们尝试来克服这个矛盾.
▲ 3.大胆类比、解放思想

评:自然数n中“添加”新数-1,就“忽如一夜春风来,千树万树梨花开”.
在实数中引入了一个新数 ,也能取到这种效果吗?

▲4.严格定义、理清思路
我们引入一个新数 ,叫做虚数单位,并规定
(1)它的平方等于-1,即  ; 
(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立.

这就规定了虚数单位i的两条本质属性.

▲5. “添加”虚数单位,诞生新的数系
(1) i与实数相乘,得形如b i的数,当b≠0时,称b i为纯虚数. 这就“忽如一夜春风来,千树万树梨花开”
(2) 形如b i的数与实数 相加,得形如 的数叫复数.
复数的定义:形如 的数叫复数, 叫复数的实部, 叫复数的虚部 全体复数所成的集合叫做复数集,用字母c表示  
 
复数通常用字母z表示,即 ,把复数表示成 的形式,叫做复数的代数形式
▲6.复数与实数、虚数、纯虚数及0的关系
对于复数 ,
当且仅当b=0时,复数 是实数 ;
当b≠0时,复数 叫做虚数;
当b≠0且 =0时, 叫做纯虚数;
当且仅当 =b =0时,z= +b i就是实数0.
 

▲7.例题解析
例1请说出复数4,  0,  ,6 的实部与虚部,并指出哪些是实数,哪些是虚数,哪些是纯虚数?
由学生回答:
例2 实数m取什么数值时,复数z= m (m-1)+(m-1)i是:(1)实数? (2)虚数? (3)纯虚数?12
【分析】因为m∈r,所以m+1,m-1都是实数,由复数z=a+bi是实数、虚数和纯虚数的条件可以确定m的值.
解:(1)当m-1=0,即m=1时,复数z是实数;
(2)当m-1≠0,即m≠1时,复数z是虚数;
(3)当m(m-1)=0,且m-1≠0时,即m=0时,复数z 是纯虚数.  
▲8. 复数相等的定义
  (2)相等的复数定义:设a,b,c,d∈r,a+bi=c+di  .
若 ,   .
例3. 已知(x+y)+ (x -2y)i=(2x-5)+(3x +y)i,其中x,y∈r,求x与y的值.
解:根据复数相等的定义,得 ,所以x=3,y=-2
复数相等的定义是求复数值,在复数集中解方程的重要依据  一般地,两个复数只能说相等或不相等,而不能比较大小.如3+5i与4+3i不能比较大小.
▲9.小结
通过在实数中引入虚单位 ,我们将实数集扩张成了复数集.
  1. 认识了虚单位i,i具有两条本质属性.
  2. 理解了实数集扩充到复数集的原因和过程.
   3. 知道了a+bi成为实数、虚数、纯虚数的条件.
简单地说:
   b=0        a+bi为实数;
  b≠0        a+bi为虚数;
  b≠0,a=0  a+bi是纯虚数.
   {复数}={实数}∪{虚数}
   4. 理解复数相等的定义.
▲10.作业
1.设计数集的文氏图,用它来表示实数、虚数、纯虚数等数集的包含关系.下面正确的是(  )

 
2. a=0是复数z=a+bi为纯虚数的什么条件?
 答:必要非充分条件
3.  与-1的关系:  就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是- ! 
4. 复数-2i+3.14的实部和虚部是什么?
答:实部是3.14,虚部是-2.
易错为:实部是-2,虚部是3.14!
5.复数集与其它数集之间的关系:n z q r c.

12

本文来源:https://jiaoan.jxxyjl.com/gaoershuxuejiaoan/19266.html

  • 算术平均数和几何平均数的不等式_算术平均数与几何平均数(一)

    教学目标 (1)掌握“两个正数的算术平均数不小于它们的几何平均数”这一重要定理; (2)能运用定理证明不等式及求一些函数的最值; (3)能够解决一些简单的实际问题; (4)通过对不等式的结构的分析及特征的把握掌握重要不等式的联系; (5)通过对重要不等式的证明和等号成立的条件的分析,培养学生严谨科...

    发布于:2025-11-23

    详细阅读
  • 算术平均数和几何平均数的不等式_算术平均数与几何平均数(二)

    第一课时一、教材分析 (一)教材所处的地位和作用 “算术平均数与几何平均数”是全日制普通高级中学教科书(试验修订本·必修)数学第二册(上)“不等式”一章的内容,是在学完不等式性质的基础上对不等式的进一步研究.本节内容具有变通灵活性、应用广泛性、条件约束性等特点,所以本节内容是培养学生应用...

    发布于:2025-11-23

    详细阅读
  • 曲线和方程_曲线和方程

    教学目标 (1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题. (2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念. (3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点. (4)通过求曲线方程的教学,培养学生的转...

    发布于:2025-11-23

    详细阅读
  • 不等式的性质二是什么|不等式的性质(二)

    第二课时教学目标 1.理解同向不等式,异向不等式概念; 2.掌握并会证明定理1,2,3; 3.理解定理3的推论是同向不等式相加法则的依据,定理3是移项法则的依据; 4.初步理解证明不等式的逻辑推理方法 教学重点:定理1,2,3的证明的证明思路和推导过程教学难点 :理解证明不等式的逻辑推理方法教学...

    发布于:2025-11-23

    详细阅读
  • [直线的倾斜角和斜率教案]直线的倾斜角和斜率

    教学目标 (1)了解直线方程的概念. (2)正确理解直线倾斜角和斜率概念.理解每条直线的倾斜角是唯一的,但不是每条直线都存在斜率. (3)理解公式的推导过程,掌握过两点的直线的斜率公式. (4)通过直线倾斜角概念的引入和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交...

    发布于:2025-11-22

    详细阅读
  • 算术平均数和几何平均数的不等式_算术平均数与几何平均数(二)

    第一课时一、教材分析 (一)教材所处的地位和作用 “算术平均数与几何平均数”是全日制普通高级中学教科书(试验修订本·必修)数学第二册(上)“不等式”一章的内容,是在学完不等式性质的基础上对不等式的进一步研究.本节内容具有变通灵活性、应用广泛性、条件约束性等特点,所以本节内容是培养学生应用...

    发布于:2025-11-22

    详细阅读
  • [简单的线性规划教案]简单的线性规划(二)

    线性规划教学设计方案(二)教学目标 巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值.重点难点 理解二元一次不等式表示平面区域是教学重点. 如何扰实际问题转化为线性规划问题,并给出解答是教学难点.教学步骤【新课引入】 我们知道,二元一次不等式和二元一次不等式组都表示平面...

    发布于:2025-11-22

    详细阅读
  • [二阶琴生不等式的证明]不等式的证明(二)

    第二课时教学目标 1.进一步熟练掌握比较法证明不等式; 2.了解作商比较法证明不等式; 3.提高学生解题时应变能力 教学重点 比较法的应用教学难点 常见解题技巧教学方法 启发引导式教学活动 (一)导入 新课 (教师活动)教师打出字幕(复习提问),请三位同学回答问题,教师点评. (学生活动...

    发布于:2025-11-22

    详细阅读
  • 【简单的线性规划一】简单的线性规划(一)

    教学目标 (1)使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域; (2)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念; (3)了解线性规化问题的图解法,并能应用它解决一些简单的实际问题; (4)培养学生观察、联想以...

    发布于:2025-11-22

    详细阅读
  • 一元函数不等式的证明|不等式的证明(一)

    教学目标 (1)理解证明不等式的三种方法:比较法、综合法和分析法的意义; (2)掌握用比较法、综合法和分析法来证简单的不等式; (3)能灵活根据题目选择适当地证明方法来证不等式; (4)能用不等式证明的方法解决一些实际问题,培养学生分析问题、解决问题的能力; (6)通过不等式证明,培养学生逻辑推理...

    发布于:2025-11-22

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计