立方根公式_立方根
【jiaoan.jxxyjl.com--八年级数学教案】
课题立方根教者
教学目标
基础性
目 标1、在一定的情境只,理解立方根的概念,使学生不断获得解决问题的经验,提高思维水平,学习中要注意感悟“类比”在知识产生和发展过程中的作用。 2、了解立方根的概念,会用根号表示一个数的立方根,了解开立方与立方互为逆运算,能用立方运算求一些数的立方根.
发展性
目 标能用立方根解决一些简单的实际问题。设计思路本节课通过实际问题(由正方体的体积计算边长)引出需要研究立方运算的逆运算,使学生在研究、交流的过程中说明学习立方根的意义,也便于学生了解开立方与立方是互逆运算,教学中可以引导学生借助平方根的定义,平方根的符号表示,开平方运算,类比给立方根下定义,给出立方根的符号表示和开立方运算,由特殊数的立方根到一般数的立方根,这是由特殊到一般的认识过程,再由一般数的立方根解决一些问题,是一般到特殊的认识过程,在教学时要让学生积极参与所有的数学活动,使学生在学习过程中体验科学探究与发现的方法与过程,感受到学习的兴趣与乐趣,认识到自我价值,切不可让学生死记硬背立方根的概念及符号表示,否则会扼杀学生的创造力和积极性。
学情分析
学生有什么
平方根的相关知识
学生缺什么
“类比”在知识的运用
教
学
难
点
难点表述正确地理解立方根的概念及符号表示并能熟练应用
教
学
过
程
教学活动
具体内容设计意图
预习设计1.如果x =a,则 平方根,也叫
2.25的平方根,记作: 。 7的平方根,记作: 。 0的平方根,记作: 。 —8 平方根。 正数有 平方根,它们是 。 0的平方根是 。 负数 平方根。
情境创设教师、学生
主要活动你能根据立方根的定义,你能举出某个数的立方根吗?你能用符号表示吗?例1 求下列各数的立方根 (1)-64 (2)- (3)9 (4)0 12根据计算结果,与平方根作比较,有什么不同?与同学交流。 巩固练习: 1、下列说法正确的是( ) a任意数a的平方根有2个,它们互为相反数 b任意数a的立方根有1个 c-3是27的负的立方根 d(-1) 的立方根是-1 2、下列判断正确的是( ) a64的立方根是 4 b(-1) 的立方根是1 c 的立方根是2 d如果 =a,则a=0 3、求下列各式中的x (1)x =27 (2) x +729=0 (3)(x-3) =64 例2.已知一个正方形的棱长是7cm,要再做一个正方形,使它的体积是原正方形体积的8倍,求所做的正方形的棱长是多少m。 思维拓展,运用新知 1、讨论( ) 等于多少?( ) 等于多少? 等于多少? 等于多少?
课后作业12
本文来源:https://jiaoan.jxxyjl.com/banianjishuxuejiaoan/1991.html
-
中心对称和中心对称图形的区别_中心对称和中心对称图形详细阅读
教学建议 知识归纳 1.中心对称 把一个图形绕着某一点旋转 ,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形关于点对称也称中心对称,这两个图形中的对应点,叫做关于中心的对称点. 中心对称的两个图形具有如下性质:(1)关于中心对称的两个图形全等;(2)关于中...
-
[等腰三角形的判定]等腰三角形的判定详细阅读
知识结构: 重点与难点分析: 本节内容的重点是定理 本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点 推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关...
-
相似三角形的性质_相似三角形的性质 (第2课时)详细阅读
(第2课时) 一、教学目标 1.掌握相似三角形的性质定理2、3. 2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题. 3.进一步培养学生类比的教学思想. 4.通过相似性质的学习,感受图形和语言的和谐美 二、教法引导 先学后教,达标导学 三、重点及难点 1.教学重点:是性质定理的应用...
-
【二次根式的乘法】二次根式的乘法详细阅读
教学建议 知识结构: 重点难点分析: 本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简 积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础 二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起 本节难...
-
基本作图|基本作图详细阅读
教学目标 : 1、知识目标: (1)要掌握尺规作图的方法及一般步骤; (2)掌握五种,明确尺规作图的意义。 2、能力目标: (1)通过“作图题”练习,提高学生的几何语言表达能力; (2)通过画图,培养学生的作图能力及动手能力 3、情感目标: (1)体验数学语言的简洁严谨。 (2)体会数学作图语言和...
-
[二次根式的混合运算]二次根式的混合运算详细阅读
教学建议 知识结构 重难点分析 本节课的重点是二次根式的加、减、乘、除、乘方、开方的混合运算及分母有理化。它是以二次根式的概念和性质为基础,同时又紧密地联系着整式、分式的运算,也可以说它是运算问题在初中阶段一次总结性,提高性综合学习;二次根式的运算和有理化的方法与技巧,能够进一步开拓学生的解题思路...
-
多边形的内角和|多边形的内角和 教学设计示例3详细阅读
一、素质教育目标 (一)知识教学点 1.使学生掌握四边形的有关概念及四边形的内角和外角和定理. 2.了解四边形的不稳定性及它在实际生产,生活中的应用. (二)能力训练点 1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力. 2.通过推导四边形内角和定理,对学生渗透化归思想....
-
平行四边形的判定|平行四边形的判定 (第二课时)详细阅读
七、教学步骤 【引入新课】 由的定义和性质易得且,即“平行且相等”记为,反过来当时,四边形必为平行四边形,这就是今天要讲的判定定理4(写出课题). 【讲解新课】 (1)平行四边形的判定定理4:一组对边平行且相等的四边形是平行四边形. 引导学生结合图1,把已知,求证具体化. 分析:因为已知,所以只须...
-
[相似三角形的判定]相似三角形详细阅读
教学建议 知识结构 本节首先给出了的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理 重难点分析 的概念是本节的重点也是本节的难点 是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究比研究全等三角形更具有一般性 ...
-
【最简二次根式】最简二次根式 教学设计示例5详细阅读
教学目标 1.使学生进一步理解最简二次根式的概念; 2.较熟练地掌握把一个式子化为最简二次根式的方法. 教学重点和难点 重点:较熟练地把二次根式化为最简二次根式. 难点:把被开方数是多项式和分式的二次根式化为最简二次根式. 教学过程设计 一、复习 1.把下列各式化为最简二次根式: 请说出第(3),...