三角形的中位线定理_三角形的中位线

八年级数学教案 2012-11-12 网络整理 晴天

【jiaoan.jxxyjl.com--八年级数学教案】

教学建议

知识结构

 

重难点分析

本节的重点是中位线定理.三角形中位线定理和梯形中位线定理不但给出了三角形或梯形中线段的位置关系,而且给出了线段的数量关系,为平面几何中证明线段平行和线段相等提供了新的思路.

本节的难点是中位线定理的证明.中位线定理的证明教材中采用了同一法,同一法学生初次接触,思维上不容易理解,而其他证明方法都需要添加2条或2条以上的辅助线,添加的目的性和必要性,同以前遇到的情况对比有一定的难度.

教法建议

1. 对于中位线定理的引入和证明可采用发现法,由学生自己观察、猜想、测量、论证,实际掌握效果比应用讲授法应好些,教师可根据学生情况参考采用

2.对于定理的证明,有条件的教师可考虑利用多媒体课件来进行演示知识的形成及证明过程,效果可能会更直接更易于理解

 教学设计示例

一、教学目标

1.掌握中位线的概念和三角形中位线定理

2.掌握定理“过三角形一边中点且平行另一边的直线平分第三边”

3.能够应用三角形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力

4.通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力

5. 通过一题多解,培养学生对数学的兴趣

二、教学设计

画图测量,猜想讨论,启发引导.

三、重点、难点

1.教学重点:三角形中位线的概论与三角形中位线性质.

2.教学难点:三角形中位线定理的证明.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、常用画图工具

六、教学步骤

【复习提问】

1.叙述平行线等分线段定理及推论的内容(结合学生的叙述,教师画出草图,结合图形,加以说明).

2.说明定理的证明思路.

3.如图所示,在平行四边形ABCD中,M、N分别为BC、DA中点,AM、CN分别交BD于点E、F,如何证明 ?

分析:要证三条线段相等,一般情况下证两两线段相等即可.如要证 ,只要 即可.首先证出四边形AMCN是平行四边形,然后用平行线等分线段定理即可证出.

4.什么叫三角形中线?(以上复习用投影仪打出)

【引入新课】

1.三角形中位线:连结三角形两边中点的线段叫做三角形中位线.

(结合三角形中线的定义,让学生明确两者区别,可做一练习,在 中,画出中线、中位线)

2.三角形中位线性质

了解了三角形中位线的定义后,我们来研究一下,三角形中位线有什么性质.

如图所示,DE是 的一条中位线,如果过D作 ,交AC于 ,那么根据平行线等分线段定理推论2,得 是AC的中点,可见 与DE重合,所以 .由此得到:三角形中位线平行于第三边.同样,过D作 ,且DE FC,所以DE .因此,又得出一个结论,那就是:三角形中位线等于第三边的一半.由此得到三角形中位线定理.

三角形中位线定理:三角形中位城平行于第三边,并且等于它的一半

应注意的两个问题:①为便于同学对定理能更好的掌握和应用,可引导学生分析此定理的特点,即同一个题设下有两个结论,第一个结论是表明中位线与第三边的位置关系,第二个结论是说明中位线与第三边的数量关系,在应用时可根据需要来选用其中的结论(可以单独用其中结论).②这个定理的证明方法很多,关键在于如何添加辅助线.可以引导学生用不同的方法来证明以活跃学生的思维,开阔学生思路,从而提高分析问题和解决问题的能力.但也应指出,当一个命题有多种证明方法时,要选用比较简捷的方法证明.

由学生讨论,说出几种证明方法,然后教师总结如下图所示(用投影仪演示).

(l)延长DEF,使 ,连结CF,由 可得AD FC

(2)延长DEF,使 ,利用对角线互相平分的四边形是平行四边形,可得AD FC

(3)过点C作 ,与DE延长线交于F,通过证 可得AD FC

上面通过三种不同方法得出AD FC,再由 得BD FC,所以四边形DBCF是平行四边形,DF BC,又因DE ,所以DE .

(证明过程略)

例  求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形.

(由学生根据命题,说出已知、求证)

已知:如图所示,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.

求证:四边形EFGH是平行四边形.‘

分析:因为已知点分别是四边形各边中点,如果连结对角线就可以把四边形分成三角形,这样就可以用三角形中位线定理来证明出四边形EFGH对边的关系,从而证出四边形EFGH是平行四边形.

证明:连结AC

∴ (三角形中位线定理).

同理,

GH EF

∴四边形EFGH是平行四边形.

【小结】

1.三角形中位线及三角形中位线与三角形中线的区别.

2.三角形中位线定理及证明思路.

七、布置作业 

教材P188中1(2)、4、7

九、板书设计

 

本文来源:https://jiaoan.jxxyjl.com/banianjishuxuejiaoan/2319.html

  • 分式的加减法_分式的加减法

    教学目标: (1)理解通分的意义,理解最简公分母的意义; (2)掌握分式的通分法则,能熟练掌握通分运算。 教学重点:分式通分的理解和掌握。 教学难点:分式通分中最简公分母的确定。 教学工具:投影仪 教学方法:启发式、讨论式 教学过程: (一)引入 (1)如何计算: 由此让学生复习分数通分的意义、通分...

    发布于:2025-11-04

    详细阅读
  • 分式的基本性质|分式的基本性质

    第一课时 (一)教学过程 【复习提问】 1.分式的定义? 2.分数的基本性质?有什么用途? 【新课】 1.类比分数的基本性质,由学生小结出: 分式的分子与分母乘以(或除以)同一个不等于零的整式,分式的值不变,即: , (其中是不等于零的整式.) 2.加深对分式基本性质的理解: 例1 下列等式的右边...

    发布于:2025-11-04

    详细阅读
  • 三角形全等的判定3教学反思|三角形全等的判定3

    课题:三角形全等的判定(三) 教学目标: 1、知识目标: (1)掌握已知三边画三角形的方法; (2)掌握边边边公理,能用边边边公理证明两个三角形全等; (3)会添加较明显的辅助线 2、能力目标: (1)通过尺规作图使学生得到技能的训练; (2)通过公理的初步应用,初步培养学生的逻辑推理能力 3、...

    发布于:2025-11-04

    详细阅读
  • 【四边形的内角和是多少度】四边形

    教学建议 1.教材分析 (1)知识结构: (2)重点和难点分析: 重点:的有关概念及内角和定理 因为的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用 难点:的概念及不稳定性的理解和应用 在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就...

    发布于:2025-11-04

    详细阅读
  • 平行四边形及其性质_平行四边形及其性质

    教学建议 1.知识结构 2.重点和难点分析 重点:本节的重点是平行四边形的概念和性质 虽然平行四边形的概念在小学学过,但对于概念本质属性的理解并不深刻,为了加深学生对概念的理解,为以后学习特殊的平行四边形打下基础,所以教师不要忽视平行四边形的概念教学 平行四边形的性质是以后证明四边形问题的基础,也是...

    发布于:2025-11-04

    详细阅读
  • 用计算器求平方根怎么求_用计算器求平方根

    教学设计示例 一.教学目标 1 会用计算器求数的平方根; 2 通过用计算器求值及近似值计算,提高学生的运算能力和动手能力; 3 通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习知识的兴趣 二.教学重点与难点 教学重点:用计算器求一个正数的平方根的程序 教学难点 :准确用计算器求解一个...

    发布于:2025-11-04

    详细阅读
  • [数学作图题]作图题举例

    (1)知识结构 重点与难点分析 本节内容的重点是根据基本作图作出符合要求的几何图形。几何作图题同一般画图题不同,它规定只准用直尺和圆规为工具,而且每一步作图都必须有根有据,这样有助于培养学生的逻辑推理能力;另外,以后复杂的作图题常用基本作图中的三角形作基础,通过三角形来完成。 本节内容的难点是如何...

    发布于:2025-11-04

    详细阅读
  • [含字母系数的一元一次方程题目]含字母系数的一元一次方程

    教学目标 1.使学生正确认识含有字母系数的一元一次方程. 2.使学生掌握含有字母系数的一元一次方程的解法. 3.使学生会进行简单的公式变形. 4.培养学生由特殊到一般、由一般到特殊的逻辑思维能力.5.通过公式变形例题,培养学生解决实际问题的能力,激发学生的求知欲望和学习兴趣. 教学重点: (1)含有...

    发布于:2025-11-04

    详细阅读
  • 三角形全等的判定2教案|三角形全等的判定2

    课题:全等三角形的判定(二) 教学目标: 1、知识目标: (1)熟记角边角公理、角角边推论的内容; (2)能应用角边角公理及其推论证明两个三角形全等 2、能力目标: (1)通过“角边角”公理及其推论的运用,提高学生的逻辑思维能力; (2)通过观察几何图形,培养学生的识图能力 3、情感目标: (1...

    发布于:2025-11-04

    详细阅读
  • 三角形全等的判定1教学反思|三角形全等的判定1

    课题:全等三角形的判定(一) 教学目标 : 1、知识目标: (1)熟记边角边公理的内容; (2)能应用边角边公理证明两个三角形全等 2、能力目标: (1) 通过“边角边”公理的运用,提高学生的逻辑思维能力; (2) 通过观察几何图形,培养学生的识图能力 3、情感目标: (1) 通过几何证明的教学...

    发布于:2025-11-04

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计