[数学作图题]作图题举例
【jiaoan.jxxyjl.com--八年级数学教案】
(1)知识结构
重点与难点分析
本节内容的重点是根据基本作图作出符合要求的几何图形。几何作图题同一般画图题不同,它规定只准用直尺和圆规为工具,而且每一步作图都必须有根有据,这样有助于培养学生的逻辑推理能力;另外,以后复杂的作图题常用基本作图中的三角形作基础,通过三角形来完成。
本节内容的难点是如何构思作图思路,如何分解所要求作的几何图形,探索出作图步骤。比较复杂的作图题,要经过严格地分析,才能找到作图的根据和方法,这对推理能力的要求比较高。对刚刚学习几何作图问题的初二学生来讲,他们会感到困难的,所以把上述作为难点来对待。
教法建议
本节课教学模式的选择与学习方法主要是通过师生互动交流、学生群体互动交流,教给学生学习数学的切实方法。让学生直接参加课堂活动,将教与学融为一体。具体说明如下:
(1)本节课开始,由同学们写出五种基本作图并作图,保留痕迹。要求同桌互相检查,从一开始就鼓励双边交流与多边交流。体现以“学生为主体”的教学思想。
(2)出示问题(例1,例2,例3),让学生主动探索解决。
对例1 学生可以独立思考或者相互讨论。教师巡视,若发现有一些学生已经通过某种途径获得问题的解答,则可以让学生表述自己的解法,否则可以启发。教师注意强调作图题的有关事项。
对例2、例3仍是学生思考与交流。需要的话,教师应当提供必要的帮助:大家是否有点困难? 有没有思路 ?你是否知道自己要达到的目的,或者说你想得到什么(必要的话,可以提示学生回顾一下例1作法过程)然后,让学生试着写出作法,利用投影展示学生的作品,师生共同纠正完善。
这一过程给学生提供了自主活动的机会,通过尝试几个实例,进而获得作图题的一般解题思路和方法。讲清尺规作图题的如何分析作法的来源。
教学目标 :
1、知识目标:
(1)能够利用基本作图作出符合要求作的几何图形;
(2)熟练作图的规范语言;
2、能力目标:
(1)通过作图题,培养学生的作图能力、语言表达能力、逻辑思维与推理能力;
(2)通过作图问题的解决,提高作图的技能和技巧.
3、情感目标:
通过作图练习,培养学生良好的书写习惯.
教学重点:根据基本作图作出符合要求的几何图形.
教学难点 :如何构思作图思路,如何分解所要求作的几何图形,探索出作图步骤.
教学用具:直尺,微机
教学方法:自学辅导
教学过程 :
1、复习引入
(1)五种基本作图是什么?(学生回答后,投影显示)
(2)学生在练习本上画出五种基本作图(不写作法,保留痕迹)
教师巡视,并指导个别学生.
2、新课
(1)讲解例1:教师注重作法的思路分析,并板书作法.
例1 已知两边及其夹角,求作三角形.
已知: ,线段 , 如图,
求作: ,使 A= ,AB= ,AC=
作法:1、作 MAN=
2、在射线AM、AN上分别作线段AB= ,AC=
3、连结BC
为所求作的三角形
强调说明:
①一般几何作图题的步骤:已知、求作、作法、证明.在一般情况下,只要求掌握已知、求作、作法三个步骤.
②几何作图题的作法的书写规定:在几何作图题中,要反复用到上节学过的基本作图,但不需重复基本作图过程,只要写出是哪个基本作图就可以了.例如“作 MAN= ”
③作图语言要规范.
(2)讲解例2
①(投影)例2已知底边 ,底边上的高 ,求作等腰三角形.
已知:线段 、
求作: ,使AB=AC,且BC= ,高AD=
②学生思考,教师点拨.
③找学生代表口述作法,教师板书.
作法:1、作线段BC=
2、作线段BC的垂直平分线MN,MN与BC交于点D
3、在MN上截取DA,使DA=
4、连结AB、AC
为所求的等腰三角形
(3)讲解例3
①(投影)例3 求作等腰直角三角形,使它的斜边等于已知线段
已知:线段
求作: ,使∠A= ,AB=AC,BC=
②学生思考、分析、讨论,教师巡视,适当参与讨论
③找学生代表口述作法思路
思路1:作两直角的平分线
思路2:先作一个角为 ,然后再作另一个角与其相等
思路3:先作一个角为 ,再作直角.
思路4:利用等腰直角三角形的性质,斜边上的高等于斜边的一半.
师生共同讨论,说明各种思路的优势.
3、课堂小结:
一些简单作图都是由基本作图组成的,由此,在几何作图时,先应画出草图分析,将简单的尺规作图分解为若干个基本作图.
4、布置作业 :
a、 书面作业 P88#7
b、 上交作业 P88#11、12
c、 思考题:如图
板书设计 :
本文来源:https://jiaoan.jxxyjl.com/banianjishuxuejiaoan/164339.html
-
中心对称和中心对称图形的区别_中心对称和中心对称图形详细阅读
教学建议 知识归纳 1.中心对称 把一个图形绕着某一点旋转 ,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形关于点对称也称中心对称,这两个图形中的对应点,叫做关于中心的对称点. 中心对称的两个图形具有如下性质:(1)关于中心对称的两个图形全等;(2)关于中...
-
[等腰三角形的判定]等腰三角形的判定详细阅读
知识结构: 重点与难点分析: 本节内容的重点是定理 本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点 推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关...
-
相似三角形的性质_相似三角形的性质 (第2课时)详细阅读
(第2课时) 一、教学目标 1.掌握相似三角形的性质定理2、3. 2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题. 3.进一步培养学生类比的教学思想. 4.通过相似性质的学习,感受图形和语言的和谐美 二、教法引导 先学后教,达标导学 三、重点及难点 1.教学重点:是性质定理的应用...
-
【二次根式的乘法】二次根式的乘法详细阅读
教学建议 知识结构: 重点难点分析: 本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简 积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础 二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起 本节难...
-
基本作图|基本作图详细阅读
教学目标 : 1、知识目标: (1)要掌握尺规作图的方法及一般步骤; (2)掌握五种,明确尺规作图的意义。 2、能力目标: (1)通过“作图题”练习,提高学生的几何语言表达能力; (2)通过画图,培养学生的作图能力及动手能力 3、情感目标: (1)体验数学语言的简洁严谨。 (2)体会数学作图语言和...
-
[二次根式的混合运算]二次根式的混合运算详细阅读
教学建议 知识结构 重难点分析 本节课的重点是二次根式的加、减、乘、除、乘方、开方的混合运算及分母有理化。它是以二次根式的概念和性质为基础,同时又紧密地联系着整式、分式的运算,也可以说它是运算问题在初中阶段一次总结性,提高性综合学习;二次根式的运算和有理化的方法与技巧,能够进一步开拓学生的解题思路...
-
多边形的内角和|多边形的内角和 教学设计示例3详细阅读
一、素质教育目标 (一)知识教学点 1.使学生掌握四边形的有关概念及四边形的内角和外角和定理. 2.了解四边形的不稳定性及它在实际生产,生活中的应用. (二)能力训练点 1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力. 2.通过推导四边形内角和定理,对学生渗透化归思想....
-
平行四边形的判定|平行四边形的判定 (第二课时)详细阅读
七、教学步骤 【引入新课】 由的定义和性质易得且,即“平行且相等”记为,反过来当时,四边形必为平行四边形,这就是今天要讲的判定定理4(写出课题). 【讲解新课】 (1)平行四边形的判定定理4:一组对边平行且相等的四边形是平行四边形. 引导学生结合图1,把已知,求证具体化. 分析:因为已知,所以只须...
-
[相似三角形的判定]相似三角形详细阅读
教学建议 知识结构 本节首先给出了的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理 重难点分析 的概念是本节的重点也是本节的难点 是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究比研究全等三角形更具有一般性 ...
-
【最简二次根式】最简二次根式 教学设计示例5详细阅读
教学目标 1.使学生进一步理解最简二次根式的概念; 2.较熟练地掌握把一个式子化为最简二次根式的方法. 教学重点和难点 重点:较熟练地把二次根式化为最简二次根式. 难点:把被开方数是多项式和分式的二次根式化为最简二次根式. 教学过程设计 一、复习 1.把下列各式化为最简二次根式: 请说出第(3),...