[湘教版八年级上册]湘教版八年级《矩形的性质》导学案

八年级数学教案 2012-10-31 网络整理 晴天

【jiaoan.jxxyjl.com--八年级数学教案】

教学目标
1. 理解矩形的概念,通过实验操作观察发现矩形的特殊性质,能用演绎推理的方法加以证明,并会运用这些性质进行计算和说理。
2. 经历探索矩形性质的过程,体会研究数学问题的一般方法,发展学生合情推理和演绎推理的能力。培养学生大胆猜想小心求证的科学态度。
教学重点
1.理解矩形的定义,探索矩形的特殊性质
2.应用矩形的性质解决简单的数学问题
教学难点 矩形特殊性质的探索及应用
教学过程
一、复习回顾
新课之前,我们一起来回忆一下平行四边形的相关知识。请同学们将表格填写完整。(独立完成,请学生回答)

我们知道,一个一般的四边形,使得它的两组对边分别平行,就得到了平行四边形,换言之,平行四边形是特殊的四边形。那平行四边形中会不会也有特殊的平形四边形呢?带着这个问题,开始第一个探究活动。请学生以小组为单位,利用平行四边形活动木框,完成活动一的第(1)、第(2)问。
二、合作探究  探索新知
活动一:归纳矩形的定义
如图,用四根木条做一个平行四边形的活动木框,将其直立在桌面上并轻轻推动
d点。细心观察此过程并回答以下问题:
(1)在此过程中,四边形的内角_______(有、没有)变化;四边形对边的数量关系_______(有、没有)变化。四边形abcd仍然保持平行四边形的形状吗?为什么?理由:_________________________________
(2)观察∠dab的变化,当∠dab为直角时,  abcd变成了______形,即______形。
(请一个小组派代表上讲台演示并回答

有上述活动过程可知,一个平行四边形,使得它的一个角为直角,就得到了矩形。由此归纳出矩形的定义:有一个角是直角的平行四边形是矩形(板书)
强调: ①平行四边形 ②有一个角是直角
问一问:根据矩形的定义,如何理解矩形和平行四边形的关系
指出:矩形是特殊的平行四边形。第一,矩形是平行四边形。因此它应该具有平行四边形的所有性质。第二,矩形是有一个角是直角的平行四边形。那么由矩形的定义和平行四边形的性质可以推出矩形还有其它的特殊性质。
活动二:探究矩形的特殊性质
1、折一折、猜一猜:请学生们利用准备好的矩形纸片,类比平行四边形性质的探究方法,从对称性,边,角,对角线四个角度与平行四边形对比,猜一猜矩形的特殊性质,在小组中讨论并把表填写完整
 对称性 边 角 对角线
平行四边形的一般性质 
中心对称   
矩形的
特殊性质    
通过折叠发现:矩形既是中心对称图形又是___________图形,有_____条对称轴,对称轴是_________________________(强调对称轴是直线)。并猜想得到:
(1)矩形的四个角都是直角(板书)
(2 )矩形的对角线相等(板书)
2、证一证
(1)求证:矩形的四个角都是直角

已知:如图,四边形abcd是矩形
求证:∠a = ∠b = ∠c = ∠d =90°
证明:(略)
 矩形的性质定理1:矩形的四个角都是直角        
几何语言:如图,∵四边形abcd是矩形                                  123
∴∠a = ∠b = ∠c = ∠d =90°                         
(2)求证:矩形的对角线相等

已知:如图,四边形abcd是矩形
求证:ac = bd
证明:(略)
 矩形的性质定理2:矩形的对角线相等     
几何语言:如图,∵四边形abcd是矩形                      
∴ac = bd                               
(说明)此环节:
1、指导学生将文字命题翻译成几何语言(1)分析命题(猜想)的条件和结论,常常将命题改写成“如果…那么…”的形式。(2)结合图形写出已知和求证
2、指导学生如何证明,重点关注学生的思维过程及规范推理格式
3、先独立完成,再小组讨论,展示,学生互评。
三、知识梳理
1、矩形的性质:
(1)对称性:矩形既是               图形又是               图形;
(2)边:矩形的对边            且         
(3)角:矩形的四个角都是        
(4)对角线:矩形的对角线       且        
2、性质的运用:可以解决线段相等的问题及直角三角形的边、角问题;常与等腰三角形和直角三角形结合思考,将矩形问题转化成三角形问题解决。
四、应用新知,解决问题
1、如图,四边形abcd是矩形
(1).若已知ab=8㎝,ad=6㎝,
      则ac=_______ ㎝ ,ob=_______ ㎝

(2).若已知 ∠doa=60°,ac=2㎝,
则ad= _____cm,ab= _____cm
(思路小结:我们常常将矩形问题转化成直角三角形或等腰三角形问题来解决)
2、如图,矩形abcd被两条对角线分成四个小三角形,如果四个小三角形周长的和是86cm,矩形的对角线长是13cm,那么该矩形的周长是多少?

五、小结反思
1、这节课主要学习了矩形的哪些知识?
矩形的定义:有一个角是直角的平行四边形是矩形;矩形的性质定理1:矩形的四个角都是直角;矩形的性质定理2:矩形的对角线相等
2、我们是如何获得这些知识的?通过操作、观察,归纳出矩形的定义。类比平行四边形性质的探索方法,从“对称性,边,角,对角线”四个角度与平行四边形进行比较,通过“探索—猜想—求证”得到矩形的特殊性质
3、应用矩形的性质解决几何问题常用的方法?将矩形问题转化为三角形(直角三角形,等腰三角形)问题
六、作业布置
1、课本第100页,第 1、2、3题123
2、《同步练习》19.1矩形(一)
七、板书设计
19.1.1矩形的性质
 
1.矩形的定义                                     3.矩形性质的应用      

2.矩形的特殊性质                            
定理1
定理2

123

本文来源:https://jiaoan.jxxyjl.com/banianjishuxuejiaoan/1969.html

  • 中心对称和中心对称图形的区别_中心对称和中心对称图形

    教学建议 知识归纳 1.中心对称 把一个图形绕着某一点旋转 ,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形关于点对称也称中心对称,这两个图形中的对应点,叫做关于中心的对称点. 中心对称的两个图形具有如下性质:(1)关于中心对称的两个图形全等;(2)关于中...

    发布于:2025-11-06

    详细阅读
  • [等腰三角形的判定]等腰三角形的判定

    知识结构: 重点与难点分析: 本节内容的重点是定理 本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点 推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关...

    发布于:2025-11-06

    详细阅读
  • 相似三角形的性质_相似三角形的性质 (第2课时)

    (第2课时) 一、教学目标 1.掌握相似三角形的性质定理2、3. 2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题. 3.进一步培养学生类比的教学思想. 4.通过相似性质的学习,感受图形和语言的和谐美 二、教法引导 先学后教,达标导学 三、重点及难点 1.教学重点:是性质定理的应用...

    发布于:2025-11-06

    详细阅读
  • 【二次根式的乘法】二次根式的乘法

    教学建议 知识结构: 重点难点分析: 本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简 积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础 二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起 本节难...

    发布于:2025-11-06

    详细阅读
  • 基本作图|基本作图

    教学目标 : 1、知识目标: (1)要掌握尺规作图的方法及一般步骤; (2)掌握五种,明确尺规作图的意义。 2、能力目标: (1)通过“作图题”练习,提高学生的几何语言表达能力; (2)通过画图,培养学生的作图能力及动手能力 3、情感目标: (1)体验数学语言的简洁严谨。 (2)体会数学作图语言和...

    发布于:2025-11-06

    详细阅读
  • [二次根式的混合运算]二次根式的混合运算

    教学建议 知识结构 重难点分析 本节课的重点是二次根式的加、减、乘、除、乘方、开方的混合运算及分母有理化。它是以二次根式的概念和性质为基础,同时又紧密地联系着整式、分式的运算,也可以说它是运算问题在初中阶段一次总结性,提高性综合学习;二次根式的运算和有理化的方法与技巧,能够进一步开拓学生的解题思路...

    发布于:2025-11-06

    详细阅读
  • 多边形的内角和|多边形的内角和 教学设计示例3

    一、素质教育目标 (一)知识教学点 1.使学生掌握四边形的有关概念及四边形的内角和外角和定理. 2.了解四边形的不稳定性及它在实际生产,生活中的应用. (二)能力训练点 1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力. 2.通过推导四边形内角和定理,对学生渗透化归思想....

    发布于:2025-11-06

    详细阅读
  • 平行四边形的判定|平行四边形的判定 (第二课时)

    七、教学步骤 【引入新课】 由的定义和性质易得且,即“平行且相等”记为,反过来当时,四边形必为平行四边形,这就是今天要讲的判定定理4(写出课题). 【讲解新课】 (1)平行四边形的判定定理4:一组对边平行且相等的四边形是平行四边形. 引导学生结合图1,把已知,求证具体化. 分析:因为已知,所以只须...

    发布于:2025-11-06

    详细阅读
  • [相似三角形的判定]相似三角形

    教学建议 知识结构 本节首先给出了的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理 重难点分析 的概念是本节的重点也是本节的难点 是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究比研究全等三角形更具有一般性 ...

    发布于:2025-11-06

    详细阅读
  • 【最简二次根式】最简二次根式 教学设计示例5

    教学目标 1.使学生进一步理解最简二次根式的概念; 2.较熟练地掌握把一个式子化为最简二次根式的方法. 教学重点和难点 重点:较熟练地把二次根式化为最简二次根式. 难点:把被开方数是多项式和分式的二次根式化为最简二次根式. 教学过程设计 一、复习 1.把下列各式化为最简二次根式: 请说出第(3),...

    发布于:2025-11-06

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计