[八年级上册数学线段角的轴对称性]八年级上册《线段、角的轴对称性》1导学设计
【jiaoan.jxxyjl.com--八年级数学教案】
教学目标
1.探索并证明线段垂直平分线的性质定理,能利用所学知识提出问题并解决生活中的实际问题;
2.能利用基本事实有条理的进行证明,做到每一步有根有据,渗透反证法的思想;
3.经历探索线段的轴对称的过程,在“操作——探究——归纳——证明”的过程中培养思考的严谨性和表达的条理性.
教学重点
利用线段的轴对称性探索线段垂直平分线的性质.
教学难点
1.利用线段垂直平分线的性质解决生活中的实际问题;
2.运用所学知识说明线段的垂直平分线外的点到线段两端的距离不相等.
教学过程(教师)
学生活动
设计思路
开场白
同学们,纷繁源于简单,复杂图形都是由基本图形构成的.为了更好的研究轴对称图形,今天我们就先来研究最基本的图形——线段的轴对称性.
进入状态,兴致盎然.
衔接上一节课,渗透“化繁为简”的数学研究策略.
实践探索一
在一张薄纸上画一条线段ab,操作并思考:线段是轴对称图形吗?如果是,对称轴在哪里?为什么?
积极思考,动手操作,提出猜想.
让学生动手操作,感知线段的轴对称性,猜想对称轴的位置,为后续研究作铺垫,同时激发学生的学习兴趣.
实践探索二
如图2-17直线l是线段ab的垂直平分线,如果沿直线l翻折,你有什么发现?说说你的看法.
动手操作,验证猜想,描述发现.
在操作中感知线段的轴对称性,培养数学语言的表达能力.
实践探索三
如图,线段ab的垂直平分线l交ab于点o,点p是l上任意一点,pa与pb相等吗?为什么?通过证明,你发现了什么?用语言描述你得到的结论.
学生独立思考、积极探究.
方法不一,具体如下:
1. 利用“sas”证明△oap≌△obp后,
说明pa与pb相等;
2. 利用线段的轴对
称性和基本事实“两点确定一条直线”,说明pa与pb相等.
问题虽然比较简单,学生都能感受到pa与pb相等,但是要让学生进行推理说明还是有困难的,要提示学生从线段的垂直平分线的定义入手,说明线段或角相等,再结合证明两条线段相等的思路,让学生寻找到演绎推理的过程,培养学生的动手能力和探索精神,为下面的证明积累经验.
总结
线段垂直平分线上的点有什么特点?
讨论后共同小结.
线段垂直平分线上的点到线段两端的距离相等.
师生互动,锻炼学生的口头表达能力,培养学生勇于发表自己的看法.
实践探索四
试判断:线段的垂直平分线外的点到这条线段两端的距离相等吗?
引导学生展开讨论:
1.你能读懂题目吗?题中已知哪些条件?要说明怎样一个结论?
2.请你利用题中的已知条件和要说明的结论画出图形.
3.根据图形你能证明吗?试一试,让学生自己作图,讨论研究,并给出结论和证明.
教师点评,用幻灯片给出解答过程:
学生按老师的要求作图,猜想结论,探讨说理.
完成证明:线段垂直平分线上的点到线段两端的距离相等.
解:线段的垂直平分线外的点,到这条线段两端的距离不会相等.
如图,在线段ab的垂直平分线l外任取一点p,连接pa、pb,设pa交l于点q,连接qb.
根据“线段的垂直平分线上的点到线段两端的距离相等”,因为点q在ab的垂直平分线上,所以qa=qb.
于是pa=pq+qa=pq+qb.
因为三角形的两边之和大于第三边,所以pq+qb>pb,即pa>pb.12
本题是线段的垂直平分线性质的应用,主要是让学生经历比较线段垂直平分线上的点和线外的点与线段的两个端点的距离的关系,进一步加深对此性质的理解.另外对于文字题的证明,教师通过逐层提问、分解难点的方法,引导学生画出图形并用符号语言表示出命题,巩固证明命题的思考方法与表达形式.
指导学生活动.
练习:课本p52练习1、2.
这两题都是线段垂直平分线性质的应用.
第1题是借助网格画线段的垂直平分线有利于学生动手操作,获得成功,调动学生学习的积极性.
第2题是利用线段的垂直平分线性质解决实际生活中的问题,再次让学生感受到数学是为生活服务的.
小结
1.线段垂直平分线有哪些性质?我们是怎么证明的?
2.线段垂直平分线有哪些应用?它主要可以用来解决什么样的问题?
学生讨论、小结.
帮助学生及时归纳所学,纳入原有知识体系中.
布置作业
课本p57习题2.4,分析第1~4的解法,任选2题写出过程.
学生根据自身实际情况,选题作业.
实行作业分层,便于不同发展水平的学生自我发展.
本文来源:https://jiaoan.jxxyjl.com/banianjishuxuejiaoan/1961.html
-
用计算器求平方根怎么求_数学教案-用计算器求平方根详细阅读
教学设计示例 一.教学目标 1 会用计算器求数的平方根; 2 通过用计算器求值及近似值计算,提高学生的运算能力和动手能力; 3 通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习知识的兴趣 二.教学重点与难点 教学重点:用计算器求一个正数的平方根的程序 教学难点 :准确用计算器求解一个...
-
[最简二次根式]最简二次根式详细阅读
教学建议 1.教材分析 本节是在前两节的基础上,从实际运算的客观需要出发,引出的概念,然后通过一组例题介绍了化简二次根式的方法.本小节内容比较少(求学生了解的概念并掌握化简二次根式的方法),但是本节知识在全章中却起着承上启下的重要枢纽作用,二次根式性质的应用、二次根式的化简以及二次根式的运算都需要来...
-
[看图编题数学教案]数学教案-作图题举例详细阅读
(1)知识结构 重点与难点分析 本节内容的重点是根据基本作图作出符合要求的几何图形。几何作图题同一般画图题不同,它规定只准用直尺和圆规为工具,而且每一步作图都必须有根有据,这样有助于培养学生的逻辑推理能力;另外,以后复杂的作图题常用基本作图中的三角形作基础,通过三角形来完成。 本节内容的难点是如...
-
数学教案|数学教案-菱形详细阅读
教学建议 知识结构 重难点分析 本节的重点是菱形的性质和判定定理。菱形是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。菱形的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要...
-
[小班数学教案三角形]数学教案-关于三角形的一些概念详细阅读
教学目标 : (1)使学生理解三角形、三角形的边、顶点、内角的概念; (2)正确理解三角形的角平分线、中线、高这三个概念的含义、联系及区别; (3)能正确地画出一个三角形的角平分线、中线和高; (4)能用符号规范地表示一个三角形及六个元素; (5)通过对三角形有关概念的教学,提高学生对概念的辨析能力...
-
数学教案|数学教案-矩形 教学示例二详细阅读
一、教学目标 1.掌握矩形的定义,知道矩形与平行四边形的关系. 2.掌握矩形的性质定理. 3.使学生能应用矩形定义、性质等知识,解决简单的证明题和计算题,进一步培养学生的分析能力. 4.通过性质的学习,体会矩形的应用美. 二、教法设计 观察、启发、总结、提高,类比探讨,讨论分析,启发式. 三、重点...
-
最简二次根式表_数学教案-最简二次根式 教学设计示例4详细阅读
教学目标 1.使学生理解最简二次根式的概念; 2.掌握把二次根式化为最简二次根式的方法. 教学重点和难点 重点:化二次根式为最简二次根式的方法. 难点:最简二次根式概念的理解. 教学过程 设计 一、导入 新课 计算: 我们再看下面的问题: 简,得到 从上面例子可以看出,如果把二次根式先进行化简...
-
二次根式的化简题|数学教案-二次根式的化简详细阅读
教学建议 知识结构 重难点分析 本节的重点是 的化简 本章自始至终围绕着二次根式的化简与计算进行,而 的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论 本节的难点是正确理解与应用公式 ...
-
【等腰三角形的性质】等腰三角形的性质详细阅读
知识结构 重点与难点分析: 本节内容的重点是及其推论。等腰三角形两底角相等(等边对等角)是证明同一三角形中两角相等的重要依据;而在推论中提到的等腰三角形底边上的高、中线及顶角平分线三线合一这条重要性质也是证明两线段相等,两个角相等及两直线互相垂直的重要依据。为证明线段相等,角相等或垂直平提供了方法...
-
一元二次方程初三数学教案|数学教案-一元二次方程详细阅读
教学目标 :(1)理解一元二次方程的概念 (2)掌握一元二次方程的一般形式,会判断一元二次方程的二次项系数、一次项系数和常数项。 (2)会用因式分解法解一元二次方程教学重点:一元二次方程的概念、一元二次方程的一般形式教学难点 :因式分解法解一元二次方程教学过程 :...