九年级数学二次函数与一元二次方程的关系_九年级数学下册《二次函数与一元二次方程的联系》教案(湘教版)
【jiaoan.jxxyjl.com--九年级数学教案】
【知识与技能】
1.掌握二次函数图象与x轴的交点横坐标与一元二次方程两根的关系.
2.理解二次函数图象与x轴的交点的个数与一元二次方程根的个数的关系.
3.会用二次函数图象求一元二次方程的近似根.
4.能用二次函数与一元二次方程的关系解决综合问题.
【过程与方法】
经历探索二次函数与一元二次方程的关系的过程,体会二次函数与方程之间的联系,进一步体会数形结合的思想.
【情感态度】
通过自主学习,小组合作,探索出二次函数与一元二次方程的关系,感受数学的严谨性,激发热爱数学的情感.
【教学重点】
①理解二次函数与一元二次方程的联系.
②求一元二次方程的近似根.
【教学难点】
一元二次方程与二次函数的综合应用.
一、情境导入,初步认识
1.一元二次方程ax2+bx+c=0的实数根,就是二次函数y=ax2+bx+c,当 y=0 时,自变量x的值,它是二次函数的图象与x轴交点的 横坐标 .
2.抛物线y=ax2+bx+c与x轴交点个数与一元二次方程ax2+bx+c=0根的判别式的关系:当b2-4ac<0时,抛物线与x轴 无 交点;当b2-4ac=0时,抛物线与x轴有 一 个交点;当b2-4ac>0时,抛物线与x轴有 两 个交点.
学生回答,教师点评
二、思考探究,获取新知
探究1 求抛物线y=ax2+bx+c与x轴的交点
例1 求抛物线y=x2-2x-3与x轴交点的横坐标.
【分析】抛物线y=x2-2x-3与x轴相交时,交点的纵坐标y=0,转化为求方程x2-2x-3=0的根.
解:因为方程x2-2x-3=0的两个根是x1=3,x2=-1,所以抛物线y=x2-2x-3与x轴交点的横坐标分别是3或-1.
【教学说明】求抛物线与x轴的交点坐标,首先令y=0,把二次函数转化为一元二次方程,求交点的横坐标就是求此方程的根.
探究2 抛物线与x轴交点的个数与一元二次方程的根的个数之间的关系思考:
(1)你能说出函数y=ax2+bx+c(a≠0)的图象与x轴交点个数的情况吗?猜想交点个数和方程ax2+bx+c=0(a≠0)的根的个数有何关系?
(2)一元二次方程ax2+bx+c=0(a≠0)的根的个数由什么来判断?
本文来源:https://jiaoan.jxxyjl.com/jiunianjishuxuejiaoan/38332.html
-
正弦和余弦_正弦和余弦详细阅读
教学建议 1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等 2.重点、难点分析 (1) 正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三...
-
[圆的内接四边形有什么性质]圆的内接四边形详细阅读
1 知识结构 2 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3 教法建议 本节内容需要一个课时. (1)教...
-
【扇形所含弓形的面积】圆、扇形、弓形的面积详细阅读
(一) 教学目标 : 1、掌握扇形面积公式的推导过程,初步运用扇形面积公式进行一些有关计算; 2、通过扇形面积公式的推导,培养学生抽象、理解、概括、归纳能力和迁移能力; 3、在扇形面积公式的推导和例题教学过程 中,渗透“从特殊到一般,再由一般到特殊”的辩证思想. 教学重点:扇形面积公式的导出及应用....
-
方差公式|方差详细阅读
教学设计示例1第一课时 素质教育目标 (一)知识教学点 使学生了解、标准差的意义,会计算一组数据的与标准差 (二)能力训练点 1.培养学生的计算能力 2.培养学生观察问题、分析问题的能力,培养学生的发散思维能力 (三)德育渗透点 1.培养学生认真、耐心、细致的学习态度和学习习惯 2.渗透数学...
-
两圆的公切线条数|两圆的公切线详细阅读
第一课时 (一) 教学目标 : (1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法; (2)培养学生的归纳、总结能力; (3)通过两圆外公切线长的求法向学生渗透“转化”思想. 教学重点: 理解两圆相切长等有关概念,两圆外公切线的求法. 教学难点 : 两圆外公切线和两圆外公切线长学生理解的不透,...
-
二次函数y=ax2的图象和性质|二次函数y=ax2的图象详细阅读
教学设计示例1 课题:二次函数 的图象 教学目标: 1、会用描点法画出二次函数 的图象; 2、根据图象观察、分析出二次函数 的性质; 3、进一步理解二次函数和抛物线的有关知识 4、渗透由特殊到一般的辩证唯物主义观点; 5、渗透数形结合的数学思想方法,培养观察能力和分析问题的能力; 6、培养学生勇于探...
-
[圆的内接四边形有什么性质]圆的内接四边形详细阅读
1 知识结构 2 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3 教法建议 本节内容需要一个课时. (1)教...
-
[相切约束的作图原理]相切在作图中的应用详细阅读
1、教材分析 (1)知识结构 (2)重点、难点分析 重点:使学生理解画“连接”图形的理论依据.它是本节内容的核心,也是今后在实际制图应用中的基础. 难点:①对“连接”图形原理的理解.因为它是应用抽象知识来描述客观问题,学生常常因抽象思维能力较弱,而没有真正理解和掌握;②线段与弧、弧与弧连接时圆心位置...
-
【圆周角定理】圆周角详细阅读
第一课时 (一) 教学目标 : (1)理解的概念,掌握的两个特征、定理的内容及简单应用; (2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力; (3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法. 教学重点:的概念和定理 教学难点 :定理的证明中由“一般到特殊”的数学思想方法和完全归纳...
-
可化为一元二次方程的分式方程的解法_可化为一元二次方程的分式方程详细阅读
一、教学目标 1.使学生掌握的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根 2.通过本节课的教学,向学生渗透“转化”的数学思想方法; 3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点 二、重点·难点·疑点及解决办法 1.教学重点:的解法. 2.教学难点...