二次函数y=ax2的图象和性质|二次函数y=ax2的图象

九年级数学教案 2025-12-31 网络整理 晴天

【jiaoan.jxxyjl.com--九年级数学教案】

教学设计示例1

课题:二次函数 的图象

教学目标:

1、会用描点法画出二次函数 的图象;

2、根据图象观察、分析出二次函数 的性质;

3、进一步理解二次函数和抛物线的有关知识

4、渗透由特殊到一般的辩证唯物主义观点;

5、渗透数形结合的数学思想方法,培养观察能力和分析问题的能力;

6、培养学生勇于探索创创新及实事求是的科学精神.

教学重点:根据图象,观察、分析出二次函数的性质

教学难点:渗透数形结合的数学思想方法

教学用具:直尺、微机

教学方法:谈话、探究式

教学过程

1、列表、描点画出函数 与 的图象,引入新课

例:画出函数 与 的图象

解:列两个表

x

-4

-3

-2

-1

0

1

2

3

4

8

4.5

2

0.5

0

0.5

2

4.5

8


x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

8

4.5

2

0.5

0

0.5

2

4.5

8

分别描点画图

2、根据图象发现问题,由学生探索出新知识.

提问:你能从图象中发现抛物线是哪些性质?这两个函数图象有何异同?

(1)这两个函数的图象都关于y轴对称.这一点可以从刚才的列表中可以看出, 时所对应的y值分别相等,如 等.这样的两个点关于y轴对称.由这些点构成的抛物线也关于y轴对称.从解析式中也可以得出这个结论:互为相反数的两个数的平方数相等,因此,这两个函数的图象都是关于y轴对称的.

(2)从图中可以看出,x可取x轴上的任意一点,而y对应的是大于、等于零的数.即抛物线有最低点(0,0).这一点可以从解析式中得到很好的解释, 可取

任意实数. 图象开口向上.这也说明数与形是数学中的两条线索,它们是互相对应的,反映了数形结合的思想.

(3)从图中也可以看出抛物线不同于我们以前学过的正比例函数和一次函数,这两个函数的图象都是直线,而抛物线是曲线,有一个拐弯,函数的图象都在最低点拐了一个弯.这样它们的性质几发生了变化.在y轴的左侧,从左向右呈下坡趋势,即y随x的增大而减小;在y轴的右侧,从左向右,呈上坡趋势,即y随x的增大而增大.这一变化趋势也可以从列表中看出.

(4)这两个图象除以上相同之处外,还有不同的地方.如: 离y轴近, 离y轴远.从列表中可以看出:如 过点(2,2),而 过点(2,8)也就是说,当x=2时, 的图象所对应的点高于 所对应的点.因此会有上述的结论.

3、画出函数 的图象

与 中的a都是正数,当a<0时, 的图象会是什么样子呢?

我们看例2

例2、画出函数 的图象

解:列表:

x

-3

-2

-1

0

1

2

3

y

-9

-4

-1

0

-1

-4

-9

描点画图:

4、从函数图象入手,再次总结二次函数的性质

(1)与刚才两个图象不同的是, 的图象开口向下.这是因为x是任意实数, , 即 ,因此,开口会向下.图象有最高点(0,0)

(2)此图象仍然是关于y轴对称的

(3)在y轴的左侧,y随x的增大而增大;在y轴的右侧,y随x的增大而减小

5、得出一般的规律

一般地,抛物线 的对称轴是y轴,顶点是原点,当a>0时,抛物线 的开口向上,当a<0时,抛物线 的开口向下,a的绝对值越大,图象越靠近y轴.

6、小结:这一节课,从始至中都是结合图象观察、归纳总结出二次函数 的性质,体现了数与形的结合.函数图象是解决函数问题的有利工具,希望大家能自觉地应用.

7、作业 :习题13.6A组1、2B组1、2
  第 1 2 页  

本文来源:https://jiaoan.jxxyjl.com/jiunianjishuxuejiaoan/166755.html

  • 正弦和余弦_正弦和余弦

    教学建议 1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等 2.重点、难点分析 (1) 正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三...

    发布于:2025-12-31

    详细阅读
  • [圆的内接四边形有什么性质]圆的内接四边形

    1 知识结构 2 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3 教法建议 本节内容需要一个课时. (1)教...

    发布于:2025-12-31

    详细阅读
  • 【扇形所含弓形的面积】圆、扇形、弓形的面积

    (一) 教学目标 : 1、掌握扇形面积公式的推导过程,初步运用扇形面积公式进行一些有关计算; 2、通过扇形面积公式的推导,培养学生抽象、理解、概括、归纳能力和迁移能力; 3、在扇形面积公式的推导和例题教学过程 中,渗透“从特殊到一般,再由一般到特殊”的辩证思想. 教学重点:扇形面积公式的导出及应用....

    发布于:2025-12-31

    详细阅读
  • 方差公式|方差

    教学设计示例1第一课时 素质教育目标 (一)知识教学点 使学生了解、标准差的意义,会计算一组数据的与标准差 (二)能力训练点 1.培养学生的计算能力 2.培养学生观察问题、分析问题的能力,培养学生的发散思维能力 (三)德育渗透点 1.培养学生认真、耐心、细致的学习态度和学习习惯 2.渗透数学...

    发布于:2025-12-31

    详细阅读
  • 两圆的公切线条数|两圆的公切线

    第一课时 (一) 教学目标 : (1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法; (2)培养学生的归纳、总结能力; (3)通过两圆外公切线长的求法向学生渗透“转化”思想. 教学重点: 理解两圆相切长等有关概念,两圆外公切线的求法. 教学难点 : 两圆外公切线和两圆外公切线长学生理解的不透,...

    发布于:2025-12-31

    详细阅读
  • 二次函数y=ax2的图象和性质|二次函数y=ax2的图象

    教学设计示例1 课题:二次函数 的图象 教学目标: 1、会用描点法画出二次函数 的图象; 2、根据图象观察、分析出二次函数 的性质; 3、进一步理解二次函数和抛物线的有关知识 4、渗透由特殊到一般的辩证唯物主义观点; 5、渗透数形结合的数学思想方法,培养观察能力和分析问题的能力; 6、培养学生勇于探...

    发布于:2025-12-31

    详细阅读
  • [圆的内接四边形有什么性质]圆的内接四边形

    1 知识结构 2 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3 教法建议 本节内容需要一个课时. (1)教...

    发布于:2025-12-31

    详细阅读
  • [相切约束的作图原理]相切在作图中的应用

    1、教材分析 (1)知识结构 (2)重点、难点分析 重点:使学生理解画“连接”图形的理论依据.它是本节内容的核心,也是今后在实际制图应用中的基础. 难点:①对“连接”图形原理的理解.因为它是应用抽象知识来描述客观问题,学生常常因抽象思维能力较弱,而没有真正理解和掌握;②线段与弧、弧与弧连接时圆心位置...

    发布于:2025-12-31

    详细阅读
  • 【圆周角定理】圆周角

    第一课时 (一) 教学目标 : (1)理解的概念,掌握的两个特征、定理的内容及简单应用; (2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力; (3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法. 教学重点:的概念和定理 教学难点 :定理的证明中由“一般到特殊”的数学思想方法和完全归纳...

    发布于:2025-12-31

    详细阅读
  • 可化为一元二次方程的分式方程的解法_可化为一元二次方程的分式方程

    一、教学目标 1.使学生掌握的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根 2.通过本节课的教学,向学生渗透“转化”的数学思想方法; 3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点 二、重点·难点·疑点及解决办法 1.教学重点:的解法. 2.教学难点...

    发布于:2025-12-31

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计