二次函数y=ax2的图象和性质|二次函数y=ax2的图象

九年级数学教案 2025-12-31 网络整理 晴天

【jiaoan.jxxyjl.com--九年级数学教案】

教学设计示例1

课题:二次函数 的图象

教学目标:

1、会用描点法画出二次函数 的图象;

2、根据图象观察、分析出二次函数 的性质;

3、进一步理解二次函数和抛物线的有关知识

4、渗透由特殊到一般的辩证唯物主义观点;

5、渗透数形结合的数学思想方法,培养观察能力和分析问题的能力;

6、培养学生勇于探索创创新及实事求是的科学精神.

教学重点:根据图象,观察、分析出二次函数的性质

教学难点:渗透数形结合的数学思想方法

教学用具:直尺、微机

教学方法:谈话、探究式

教学过程

1、列表、描点画出函数 与 的图象,引入新课

例:画出函数 与 的图象

解:列两个表

x

-4

-3

-2

-1

0

1

2

3

4

8

4.5

2

0.5

0

0.5

2

4.5

8


x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

8

4.5

2

0.5

0

0.5

2

4.5

8

分别描点画图

2、根据图象发现问题,由学生探索出新知识.

提问:你能从图象中发现抛物线是哪些性质?这两个函数图象有何异同?

(1)这两个函数的图象都关于y轴对称.这一点可以从刚才的列表中可以看出, 时所对应的y值分别相等,如 等.这样的两个点关于y轴对称.由这些点构成的抛物线也关于y轴对称.从解析式中也可以得出这个结论:互为相反数的两个数的平方数相等,因此,这两个函数的图象都是关于y轴对称的.

(2)从图中可以看出,x可取x轴上的任意一点,而y对应的是大于、等于零的数.即抛物线有最低点(0,0).这一点可以从解析式中得到很好的解释, 可取

任意实数. 图象开口向上.这也说明数与形是数学中的两条线索,它们是互相对应的,反映了数形结合的思想.

(3)从图中也可以看出抛物线不同于我们以前学过的正比例函数和一次函数,这两个函数的图象都是直线,而抛物线是曲线,有一个拐弯,函数的图象都在最低点拐了一个弯.这样它们的性质几发生了变化.在y轴的左侧,从左向右呈下坡趋势,即y随x的增大而减小;在y轴的右侧,从左向右,呈上坡趋势,即y随x的增大而增大.这一变化趋势也可以从列表中看出.

(4)这两个图象除以上相同之处外,还有不同的地方.如: 离y轴近, 离y轴远.从列表中可以看出:如 过点(2,2),而 过点(2,8)也就是说,当x=2时, 的图象所对应的点高于 所对应的点.因此会有上述的结论.

3、画出函数 的图象

与 中的a都是正数,当a<0时, 的图象会是什么样子呢?

我们看例2

例2、画出函数 的图象

解:列表:

x

-3

-2

-1

0

1

2

3

y

-9

-4

-1

0

-1

-4

-9

描点画图:

4、从函数图象入手,再次总结二次函数的性质

(1)与刚才两个图象不同的是, 的图象开口向下.这是因为x是任意实数, , 即 ,因此,开口会向下.图象有最高点(0,0)

(2)此图象仍然是关于y轴对称的

(3)在y轴的左侧,y随x的增大而增大;在y轴的右侧,y随x的增大而减小

5、得出一般的规律

一般地,抛物线 的对称轴是y轴,顶点是原点,当a>0时,抛物线 的开口向上,当a<0时,抛物线 的开口向下,a的绝对值越大,图象越靠近y轴.

6、小结:这一节课,从始至中都是结合图象观察、归纳总结出二次函数 的性质,体现了数与形的结合.函数图象是解决函数问题的有利工具,希望大家能自觉地应用.

7、作业 :习题13.6A组1、2B组1、2
  第 1 2 页  

本文来源:https://jiaoan.jxxyjl.com/jiunianjishuxuejiaoan/166755.html

  • 【圆周角定理】圆周角

    第一课时 (一) 教学目标 : (1)理解的概念,掌握的两个特征、定理的内容及简单应用; (2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力; (3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法. 教学重点:的概念和定理 教学难点 :定理的证明中由“一般到特殊”的数学思想方法和完全归纳...

    发布于:2025-12-31

    详细阅读
  • 可化为一元二次方程的分式方程的解法_可化为一元二次方程的分式方程

    一、教学目标 1.使学生掌握的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根 2.通过本节课的教学,向学生渗透“转化”的数学思想方法; 3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点 二、重点·难点·疑点及解决办法 1.教学重点:的解法. 2.教学难点...

    发布于:2025-12-31

    详细阅读
  • 过三点的圆的方程|过三点的圆

    第一课时 (一)学习活动设计: (二)学习载体设计: (1)实践:(a)过一点A是否可以作圆?如果能作,可以作几个? (b)过两个点A、B是否可以作圆?如果能作,可以作几个?……(发现新问题) (2)实验:应用电脑动画,使学生观察、发现新问题 (3)作图:已知:不在同一条直线上的三个已知点A、...

    发布于:2025-12-31

    详细阅读
  • 频率分布直方图中每个小长方形的面积表示_频率分布

    教案设计第一课时 素质教育目标 (一)知识教学点 使学生了解的意义,了解做出一组数据的的步骤和要求 (二)能力训练点 培养学生观察问题、分析问题、解决问题的能力,培养学生统计数据的能力 (三)德育渗透点 培养学生认真、耐心、细致的学习态度和学习习惯 (四)美育渗透点 通过本节课的教学,体现了寓...

    发布于:2025-12-31

    详细阅读
  • 【正多边形和圆】正多边形和圆

    教学设计示例1 教学目标 : (1)使学生理解正多边形概念,初步掌握正多边形与圆的关系的第一个定理; (2)通过正多边形定义教学,培养学生归纳能力;通过正多边形与圆关系定理的教学培养学生观察、猜想、推理、迁移能力; (3)进一步向学生渗透“特殊——一般”再“一般——特殊”的唯物辩证法思想. 教学重点...

    发布于:2025-12-31

    详细阅读
  • 与圆有关的比例线段|和圆有关的比例线段

    教学建议 1、教材分析 (1)知识结构 (2)重点、难点分析 重点:相交弦定理及其推论,切割线定理和割线定理.这些定理和推论不但是本节的重点、本章的重点,而且还是中考试题的热点;这些定理和推论是重要的工具性知识,主要应用与圆有关的计算和证明. 难点:正确地写出定理中的等积式.因为图形中的线段较多,...

    发布于:2025-12-31

    详细阅读
  • 由一个二元一次方程和一个二元二次方程组成的方程组_由一个二元一次方程和一个二元二次方程组成的方程组

    第一课时 一、教学目标 1.使学生知道二元二次方程的概念、二元二次方程组的概念; 2.使学生掌握由代入法解 3 通过二元二次方程组解法的教学,向学生渗透“消元”、“降次”的数学思想方法,从而提高分析问题和解决问题的能力; 4 通过二元二次方程组解法的剖析,对学生进行事物间可以相互转化的辨证唯物...

    发布于:2025-12-31

    详细阅读
  • 【弦切角定理】弦切角

    1、教材分析 (1)知识结构 (2)重点、难点分析 重点:定理是本节的重点也是本章的重点内容之一,它在证明角相等、线段相等、线段成比例等问题时,有重要的作用;它与圆心角和圆周角以及直线形角的性质构成了完美的角的体系,属于工具知识之一. 难点:定理的证明.因为在证明过程中包含了由“一般到特殊”的数学...

    发布于:2025-12-31

    详细阅读
  • 三角形的内切圆_三角形的内切圆

    1、教材分析 (1)知识结构 (2)重点、难点分析 重点:三角形内切圆的概念及内心的性质.因为它是三角形的重要概念之一. 难点:①难点是“接”与“切”的含义,学生容易混淆;②画三角形内切圆,学生不易画好. 2、教学建议 本节内容需要一个课时. (1)在教学中,组织学生自己画图、类比、分析、深刻理解...

    发布于:2025-12-31

    详细阅读
  • 直线和圆的位置关系_直线和圆的位置关系

    1 知识结构 2 重点、难点分析 重点:的性质和判定.因为它是本单元的基础(如:“切线的判断和性质定理”是在它的基础上研究的),也是高中解析几何中研究“”的基础. 难点:在对性质和判定的研究中,既要有归纳概括能力,又要有转换思想和能力,所以是本节的难点;另外对“相切”要分清直线与圆有唯一公共点是指...

    发布于:2025-12-31

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计