[高一数学必修一函数的单调性的教学视频]人教版高一数学《函数的单调性判断》教案

高一数学教案 2015-02-28 网络整理 晴天

【jiaoan.jxxyjl.com--高一数学教案】

概念反思:
1.数学是一种工具:通过它可以很好的分析和解决问题。数学总是在不断的发明创造中去解决所遇到的问题。
2.为了研究自然界中量与量之间的变化关系发明了函数 …….同样为了进一步研究函数值的增减变化情况发明了单调性的概念……导数概念的发明使我们对函数性质的了解在单调性的基础上又更深入一步……增减变化的快慢.(图像的陡峭程度问题被数量化)
概念回顾:
函数单调性的定义
 
方法梳理:
1.函数单调性的判断及运用:
① 观察法:  同增异减.
② 导数法:在某个区间 内,如果 ,那么函数 在这个区间内单调递增;如果 ,那么函数 在这个区间内单调递减.
③ 图像法:变换
④ 用定义来判断函数的单调性.
对于任意的两个数x1,x2∈i,且当x1<x2时,都有f(x1)<f(x2),那么函数f(x)就是区间i上的增函数.
对于任意的两个数x1,x2∈i,且当x1<x2时,都有f(x1)>f(x2),那么函数f(x)就是区间i上的减函数.
在函数y=f(x)比较复杂的情况下,比较f(x1)与f(x2)的大小并不很容易.
                                            
体验回顾:
1.下列说法正确的是       .
1)定义在r上的函数 满足 ,则 为r上的单调增函数
2)定义在r上的函数 在 上是单调增函数,在 上是单调增函数,则 为r上的单调增函数
3)定义在r上的函数 在 上是单调减函数,在 上是单调减函数,则为r上的单调减函数
4)定义在r上的函数 满足 ,则 为r上不是单调减函数
2. 求下列函数的单调区间        .
①. ;             ②.
3. 函数 的单调减区间是        .
4.函数   ,单调区间        .
5.函数 的最小值是          . 
 
经典探究:
例: 已知函数 ,对于 上的任意 ,有如下条件:① ;② ;③ .其中是 的充分条件是          (将充分条件的序号都填上) ___________.  . ②,③

变式:已知函数  与 的定义域都是 ,值域分别是 与 ,在 上 是增函数而 是减函数,求证 分:  在 上为减函数.
 
变式:函数 在区间 上是单调 函数,求实数 的取值范围。

解:设 且 ,则
而 在 上是单调函数, 在 上恒正或恒负。
又 ,由 知只 有 符合题意,
 时, 在 上单减
变式:若函数f(x)=4xx2+1在区间(m,2m+1)上是单调递增函数,则m∈__________.
解析 ∵f′(x)=4(1-x2)(x2+1)2,令f′(x)>0,得-1<x<1,
∴f(x)的增区间为(-1,1).
又∵f(x)在(m,2m+1)上单调递增,
∴m≥-1,2m+1≤1, ∴-1≤m≤0.
∵区间(m,2m+1)中2m+1>m,∴m>-1.12
综上,-1<m≤0.
答案 (-1,0]
例:2 三个同学对问题“关于 的不等式 在 上恒成立,求实数 的范围”提出各自的解题思路:
甲说:只需不等式左边最小值不小于右边最大值。
乙说:把不等式变形为左边含变量 的函数,右边仅含常数,求函数最值。
丙说:把不等式两边看成关于 的函数,作出函数的图像。
参考上述解题思路,你认为他们所讨论的问题的正确结论,即 的范围是       
参考答案:解析一:两边同除以 ,则
当且仅当 ,两等式同时成立, 所以 时,右边取最小值10,
解析二:根据填空题特点,可用数值代入,推算 值
设 ,将 上函数值列表如下:
 
1 2 3 4 5 6 7 8 9 10 11
 
30 20.5 17.53 14.25 10 16.17 24.57 35.13 47.78 62.5 79.27
可推算 时, 取最小值10,
解析三:    
当 , 
故  时, 取最小值10, 。(此法需用 结论)
命题意图与思路点拨:本题作为填空有效考查了学生探究能力与运算变换能力,以学生交流给出的语言作为解题参考,削减难度,探讨不等式恒成立的可能途径,充分考查学生利用函数思想处理恒成立不等式问题能力,题型别致。要重视变量分离方法在解题中的作用。
变式:当 时,函数 的最小值为              8

变式:关于 的不等式 在 上恒成立,则实数 的范围为__    ____      

变式:
变式:设 ,则函数( 的最小值是       .
课后拓展:
1.下列说法正确的有         (填序号)
①若 ,当 时, ,则 在i上是增函数.
②函数 在r上是增函数.
③函数 在定义域上是增函数.
④ 的单调区间是 .
2.若函数 的零点 , ,则所有满足条件的 的和为?
3. 已知函数  ( 为实常数).
(1)若 ,求 的单调区间;
(2)若 ,设 在区间 的最小值为 ,求 的表达式;
(3)设 ,若函数 在区间 上是增函数,求实数 的取值范围.
解析:(1)     2分
∴ 的单调增区间为( ),(- ,0), 的单调减区间为(- ),( ) 
(2)由于 ,当 ∈[1,2]时,
10      即    
 
20       即    
30       即 时    
综上可得   
(3)   在区间[1,2]上任取 、 ,且

     (*)
∵   ∴
∴(*)可转化为 对任意 、
即 
10  当
20         由   得     解得
30           得 
所以实数 的取值范围是

12

本文来源:https://jiaoan.jxxyjl.com/gaoyishuxuejiaoan/27466.html

  • 【充分条件与必要条件】充分条件与必要条件

    教学目标 (1)正确理解充分条件、必要条件和充要条件的概念; (2)能正确判断是充分条件、必要条件还是充要条件; (3)培养学生的逻辑思维能力及归纳总结能力; (4)在充要条件的教学中,培养等价转化思想. 教学建议(一)教材分析1.知识结构 首先给出推断符号“ ”,并引出的意义,在此基础上讲述了充...

    发布于:2025-12-08

    详细阅读
  • 函数奇偶性知识点归纳|函数单调性与奇偶性

    教学目标 1 了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法 (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念 (2)能从数和形两个角度认识单调性和奇偶性 (3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶...

    发布于:2025-12-08

    详细阅读
  • [数列]数列

    教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项. (1)理解是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解的各种表示方法,理解通项公式是第 项 与项数 的关系式,能根据通项公式写出的前几项,并能根据给出的一...

    发布于:2025-12-08

    详细阅读
  • 一元二次不等式的解法_一元二次不等式的解法

    教学目标 (1)掌握; (2)知道一元二次不等式可以转化为一元一次不等式组; (3)了解简单的分式不等式的解法; (4)能利用二次函数与一元二次方程来求解一元二次不等式,理解它们三者之间的内在联系; (5)能够进行较简单的分类讨论,借助于数轴的直观,求解简单的含字母的一元二次不等式; (6)通过利...

    发布于:2025-12-08

    详细阅读
  • 等比数列的前n项和公式_等比数列的前n项和

    教学目标 1 掌握等比数列前 项和公式,并能运用公式解决简单的问题 (1)理解公式的推导过程,体会转化的思想; (2)用方程的思想认识等比数列前 项和公式,利用公式知三求一;与通项公式结合知三求二; 2 通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想 3 通过公式推导...

    发布于:2025-12-08

    详细阅读
  • 等差数列的前n项和公式_等差数列的前n项和

    教学目标 1 掌握等差数列前 项和的公式,并能运用公式解决简单的问题 (1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及五个字母,已...

    发布于:2025-12-08

    详细阅读
  • 【数列】数列

    教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项. (1)理解是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解的各种表示方法,理解通项公式是第 项 与项数 的关系式,能根据通项公式写出的前几项,并能根据给出的一个的前...

    发布于:2025-12-08

    详细阅读
  • 等差数列求和公式_等差数列

    教学目标 1 理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题 (1)了解公差的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等差中项的概念; (2)正确认识使用的各种表示法,能灵活运用通项公式求的首项、公差、项数、指定的项; (3)能通过通项公式与图像认识的性质,能用...

    发布于:2025-12-08

    详细阅读
  • 等差数列的前n项和公式_等差数列的前n项和

    教学目标 1 掌握等差数列前 项和的公式,并能运用公式解决简单的问题 (1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及...

    发布于:2025-12-08

    详细阅读
  • [交集]交集、并集

    教学目标 : (1)理解交集与并集的概念; (2)掌握有关集合的术语和符号,并会用它们正确表示一些简单的集合; (3)能用图示法表示集合之间的关系; (4)掌握两个较简单集合的的求法; (5)通过对概念的讲解,培养学生观察、比较、分析、概括、等能力,使学生认识由具体到抽象的思维过程; (6)通过对集...

    发布于:2025-12-08

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计