【逻辑联结词】逻辑联结词(1)
【jiaoan.jxxyjl.com--高一数学教案】
教学目的:1.理解逻辑联结词“或”、“且”、“非”的含义;
2.了解含有“或”、“且”、“非”的复合命题的构成.
教学重点: “或”、“且”、“非”的含义
教学难点:对“或”、“且”、“非”的含义的理解
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
内容分析:
学生在初中数学中,学习过简单的命题(包括原命题与逆命题)知识,掌握了简单的推理方法(包括对反证法的了解).由此,这一大节首先给出含有“或”、“且”、“非”的复合命题的意义,介绍了判断含有“或”、“且”、“非”的复合命题的真假的方法.接下来,讲述四种命题及其相互关系,并且在初中的基础上,结合四种命题的知识,进一步讲解反证法.然后,通过若干实例,讲述了充分条件、必要条件和充要条件的有关知识.
这一大节的重点是逻辑联结词“或”、“且”、“非”与充要条件.学习简易逻辑知识,主要是为了培养学生进行简单推理的技能,发展学生的思维能力,在这方面,逻辑联结词“或”、“且”、“非”与充要条件的有关内容是十分必要的.
这一大节的难点是对一些代数命题真假的判断.初中阶段,学生只是对简单的推理方法有一定程度的熟悉,并且,相关的技能和能力,主要还是通过几何课的学习获得的,初中代数侧重的是运算的技能和能力,因此,像对代数命题的证明,学生还需要有一个逐步熟悉的过程.
教学过程:
一、复习引入:
命题的概念:可以判断真假的语句叫命题 正确的叫真命题,错误的叫假命题
例如:①11>5 ②3是15的约数 ③0.7是整数
①②是真命题,③是假命题
反例:④3是15的约数吗? ⑤ x>8
都不是命题,不涉及真假(问题) 无法判断真假
“这是一棵大树”; “x<2”. 都不能叫命题.由于“大树”没有界定,就不能判断“这是一棵大树”的真假.由于x是未知数,也不能判断“x<2”是否成立.
注意:①初中教材中命题的定义是:判断一件事情的句子叫做命题;这里的定义是:可以判断真假的语句叫做命题.说法不同,实质是一样的
②判断命题的关键在于能不能判断其真假,即能不能判断其是否成立;不能判断真假的语句,就不是命题.
③与命题相关的概念是开语句 例如,x<2,x-5=3,(x+y)(x-y)=0.这些语句中含有变量x或y,在没有给定这些变量的值之前,是无法确定语句真假的.这种含有变量的语句叫做开语句(有的逻辑书也称之为条件命题).
在教学时,不要在判断一个语句是不是命题上下功夫,因为这个工作过于复杂,要求学生能够从正面的例子了解命题的概念就可以了.
二、讲解新课:
1.逻辑连接词
例 ⑥ 10可以被2或5整除; (10可以被2整除或10可以被5整除)
⑦ 菱形的对角线互相垂直且平分;
(菱形的对角线互相垂直且菱形的对角线互相平分)
⑧ 0.5非整数 .( 非“0.5是整数”)
逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联结词
2.简单命题与复合命题:
简单命题:不含有逻辑联结词的命题叫做简单命题 12
复合命题:由简单命题再加上一些逻辑联结词构成的命题叫复合命题
其实,有些概念前面已遇到过
如:或:不等式 x6>0的解集 { x | x<2或x>3 }
且:不等式 x6<0的解集 { x | 2< x<3 } 即 { x | x>2且x<3 }
3.复合命题的构成形式
如果用 p, q, r, s……表示命题,则复合命题的形式接触过的有以下三种:
即:p或q 记作 pq p且q 记作 pq
非p (命题的否定) 记作 p
释义:“p或q”是指p,q中的任何一个或两者.例如,“x a或x b”,是指x可能属于a但不属于b(这里的“但”等价于“且”),x也可能不属于a但属于b,x还可能既属于a又属于b(即x ab);又如在“p真或q真”中,可能只有p真,也可能只有q真,还可能p,q都为真.
“p且q”是指p,q中的两者.例如,“x a且x b”,是指x属于a,同时x也属于b(即x a b).
“非p”是指p的否定,即不是p. 例如,p是“x a”,则“非p”表示x不是集合a的元素(即x ).
开语句:语句中含有变量x或y,在没有给定这些变量的值之前,是无法确定语句真假的.这种含有变量的语句叫做开语句(有的逻辑书也称之为条件命题).也可以把简单的开语句用逻辑联结词“或”、“且”、“非”连结起来,构成复合的开语句(有的逻辑书也称之为复合条件命题),这里的“或”、“且”、“非”与复合命题中的“或”、“且”、“非”符号与意义相同.在进行命题教学时,要注意命题与开语句的区别,特别在举有关逻辑联结词“或”、“且”、“非”的例子时,容易把两者混淆.
例1(课本第26页例1)分别指出下列复合命题的形式及构成它们的简单命题:
⑴ 24既是8的倍数,也是6的被数;
⑵ 李强是篮球运动员或跳高运动员;
⑶ 平行线不相交.
解:⑴ 这个命题是p且q的形式,其中p:24是8的倍数,q:24是6的倍数.
⑵ 这个命题是p或q的形式,其中p:李强是篮球运动员,q:李强是跳高运动员.
⑶ 这个命题是非p的形式,其中p:平行线相交.
例2 命题“方程|x|=1的解是x=±1”中,使用逻辑联结词的情况是( )
a:使用了逻辑联结词“或” b:使用了逻辑联结词“且”
c:使用了逻辑联结词“非” d:没有使用逻辑联结词
三、小结
1.“或”、“且”、“非”这些词叫做逻辑联结词;
2.逻辑符号:
“或”的符号是“∨”,例如“p或q”可以记作“p ∨q”;
“且”的符号是“∧”,例如,“p且q”可以记作“p∧q”;
“非”的符号是“┑”,例如,“非p”可以记作“┑p”.
3.不含有逻辑联结词的命题是简单命题;
4.由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题
四、练习:课本第26页 “练习”
五、作业:课本 p29 习题1.6 1、2
六、板书设计(略)
七、课后记:
12
-
【充分条件与必要条件】充分条件与必要条件详细阅读
教学目标 (1)正确理解充分条件、必要条件和充要条件的概念; (2)能正确判断是充分条件、必要条件还是充要条件; (3)培养学生的逻辑思维能力及归纳总结能力; (4)在充要条件的教学中,培养等价转化思想. 教学建议(一)教材分析1.知识结构 首先给出推断符号“ ”,并引出的意义,在此基础上讲述了充...
-
函数奇偶性知识点归纳|函数单调性与奇偶性详细阅读
教学目标 1 了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法 (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念 (2)能从数和形两个角度认识单调性和奇偶性 (3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶...
-
[数列]数列详细阅读
教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项. (1)理解是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解的各种表示方法,理解通项公式是第 项 与项数 的关系式,能根据通项公式写出的前几项,并能根据给出的一...
-
一元二次不等式的解法_一元二次不等式的解法详细阅读
教学目标 (1)掌握; (2)知道一元二次不等式可以转化为一元一次不等式组; (3)了解简单的分式不等式的解法; (4)能利用二次函数与一元二次方程来求解一元二次不等式,理解它们三者之间的内在联系; (5)能够进行较简单的分类讨论,借助于数轴的直观,求解简单的含字母的一元二次不等式; (6)通过利...
-
等比数列的前n项和公式_等比数列的前n项和详细阅读
教学目标 1 掌握等比数列前 项和公式,并能运用公式解决简单的问题 (1)理解公式的推导过程,体会转化的思想; (2)用方程的思想认识等比数列前 项和公式,利用公式知三求一;与通项公式结合知三求二; 2 通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想 3 通过公式推导...
-
等差数列的前n项和公式_等差数列的前n项和详细阅读
教学目标 1 掌握等差数列前 项和的公式,并能运用公式解决简单的问题 (1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及五个字母,已...
-
【数列】数列详细阅读
教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项. (1)理解是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解的各种表示方法,理解通项公式是第 项 与项数 的关系式,能根据通项公式写出的前几项,并能根据给出的一个的前...
-
等差数列求和公式_等差数列详细阅读
教学目标 1 理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题 (1)了解公差的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等差中项的概念; (2)正确认识使用的各种表示法,能灵活运用通项公式求的首项、公差、项数、指定的项; (3)能通过通项公式与图像认识的性质,能用...
-
等差数列的前n项和公式_等差数列的前n项和详细阅读
教学目标 1 掌握等差数列前 项和的公式,并能运用公式解决简单的问题 (1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及...
-
[交集]交集、并集详细阅读
教学目标 : (1)理解交集与并集的概念; (2)掌握有关集合的术语和符号,并会用它们正确表示一些简单的集合; (3)能用图示法表示集合之间的关系; (4)掌握两个较简单集合的的求法; (5)通过对概念的讲解,培养学生观察、比较、分析、概括、等能力,使学生认识由具体到抽象的思维过程; (6)通过对集...