等差数列一次函数形式_“等差数列”一课的
【jiaoan.jxxyjl.com--高一数学教案】
教学目标:(1)理解等差数列的概念,掌握等差数列的通项公式;
(2) 利用等差数列的通项公式能由a1, d , n ,an“知三求一”,了解等差数列的通项公式的推导过程及思想;
(3)通过作等差数列的图像,进一步渗透数形结合思想、函数思想;通过等差数列的通项公式应用,渗透方程思想。
教学重、难点:等差数列的定义及等差数列的通项公式。
知识结构: 一般数列定义 通项公式法
递推公式法
等差数列 表示法 应用
图示法
性质 列举法
教学过程:
(一)创设情境:
1.观察下列数列:
1,2,3,4,……;(军训时某排同学报数) ①
10000,9000,8000,7000,……;(温州市房价平均每月每平方下跌的价位)②
2,2,2,2,…… ;(坐38路公交车的车费)③
问题:上述三个数列有什么共同特点?(学生会发现很多规律,如都是整数,再举几个非整数等差数列例子让学生观察)
规律:从第2项起,每一项与前一项的差都等于同一常数。
引出等差数列。
(二)新课讲解:
1.等差数列定义:
一般地,如果一个数列从第项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母 表示。
问题:(a)能否用数学符号语言描述等差数列的定义?
用递推公式表示为 或 .
(b)例 1: 观察下列数列是否是等差数列:
(1)1,-1,1,-1,…
( 2 ) 1 , 2 , 4 , 6 , 8 , 10 , …
意在强调定义中“同一个常数”
(c)例2:求上述三个数列的公差;公差d可取哪些值?d>0,d=0,d<0时,数列有什么特点
(d有不同的分类,如按整数分数分类,再举几个等差数列的例子观察d的分类对数列的影
响)
说明:等差数列(通常可称为 数列)的单调性: 为递增数列, 为常数列, 为递减数列。
例3:求等差数列13,8,3,-2,…的第5项。第89项呢?
放手让学生利用各种方法求a89,从中找出合适的方法,如利用不完全归纳法或累加法,然
后引出求一般等差数列的通项公式。
2.等差数列的通项公式:已知等差数列 的首项是 ,公差是 ,求 .
(1)由递推公式利用用不完全归纳法得出
由等差数列的定义: , , ,……
∴ , , ,……
所以,该等差数列的通项公式: .
(验证n=1时成立)。
这种由特殊到一般的推导方法,不能代替严格证明。要用数学归纳法证明的。
(2)累加法求等差数列的通项公式
让学生体验推导过程。(验证n=1时成立)
3.例题及练习:
应用等差数列的通项公式
追问 :(1)-232是否为例3等差数列中的项?若是,是第几项?12
(2)此数列中有多少项 属于区间[-100,0] ?
法一:求出a1 ,d,借助等差数列的通项公式求a20。
法二:求出d ,a20=a5+15d=a12+8d
在例4基础上,启发学生猜想证明
练习:
梯子的最高一级宽31cm,最低一级宽119cm,中间还有3级,各级的宽度成等差数列,请计算中间各级的宽度。
观察图像特征。
思考:an是关于n的一次式,是数列{an}为等差数列的什么条件?
课后反思:这节课的重点是等差数列定义和通项公式概念的理解,而不是公式的应用,有些应试教育的味道。有时抢学生的回答,没有真正放手让学生的思维发展,学生活动太少,课堂氛围不好。学生对问题的反应出乎设计的意料时,应该顺着学生的思维发展。
12-
【充分条件与必要条件】充分条件与必要条件详细阅读
教学目标 (1)正确理解充分条件、必要条件和充要条件的概念; (2)能正确判断是充分条件、必要条件还是充要条件; (3)培养学生的逻辑思维能力及归纳总结能力; (4)在充要条件的教学中,培养等价转化思想. 教学建议(一)教材分析1.知识结构 首先给出推断符号“ ”,并引出的意义,在此基础上讲述了充...
-
函数奇偶性知识点归纳|函数单调性与奇偶性详细阅读
教学目标 1 了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法 (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念 (2)能从数和形两个角度认识单调性和奇偶性 (3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶...
-
[数列]数列详细阅读
教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项. (1)理解是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解的各种表示方法,理解通项公式是第 项 与项数 的关系式,能根据通项公式写出的前几项,并能根据给出的一...
-
一元二次不等式的解法_一元二次不等式的解法详细阅读
教学目标 (1)掌握; (2)知道一元二次不等式可以转化为一元一次不等式组; (3)了解简单的分式不等式的解法; (4)能利用二次函数与一元二次方程来求解一元二次不等式,理解它们三者之间的内在联系; (5)能够进行较简单的分类讨论,借助于数轴的直观,求解简单的含字母的一元二次不等式; (6)通过利...
-
等比数列的前n项和公式_等比数列的前n项和详细阅读
教学目标 1 掌握等比数列前 项和公式,并能运用公式解决简单的问题 (1)理解公式的推导过程,体会转化的思想; (2)用方程的思想认识等比数列前 项和公式,利用公式知三求一;与通项公式结合知三求二; 2 通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想 3 通过公式推导...
-
等差数列的前n项和公式_等差数列的前n项和详细阅读
教学目标 1 掌握等差数列前 项和的公式,并能运用公式解决简单的问题 (1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及五个字母,已...
-
【数列】数列详细阅读
教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项. (1)理解是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解的各种表示方法,理解通项公式是第 项 与项数 的关系式,能根据通项公式写出的前几项,并能根据给出的一个的前...
-
等差数列求和公式_等差数列详细阅读
教学目标 1 理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题 (1)了解公差的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等差中项的概念; (2)正确认识使用的各种表示法,能灵活运用通项公式求的首项、公差、项数、指定的项; (3)能通过通项公式与图像认识的性质,能用...
-
等差数列的前n项和公式_等差数列的前n项和详细阅读
教学目标 1 掌握等差数列前 项和的公式,并能运用公式解决简单的问题 (1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及...
-
[交集]交集、并集详细阅读
教学目标 : (1)理解交集与并集的概念; (2)掌握有关集合的术语和符号,并会用它们正确表示一些简单的集合; (3)能用图示法表示集合之间的关系; (4)掌握两个较简单集合的的求法; (5)通过对概念的讲解,培养学生观察、比较、分析、概括、等能力,使学生认识由具体到抽象的思维过程; (6)通过对集...