圆的方程_圆的方程

高二数学教案 2014-05-29 网络整理 晴天

【jiaoan.jxxyjl.com--高二数学教案】

教学目标
    (1)把握圆的标准方程,能根据圆心坐标和半径熟练地写出圆的标准方程,也能根据圆的标准方程熟练地写出圆的圆心坐标和半径.
    教学建议
    教材分析
    (2)重点、难点分析
    教学设计示例
    圆的一般方程
    教学目标:
    (1)把握圆的一般方程及其特点.
    (2)能将圆的一般方程转化为圆的标准方程,从而求出圆心和半径.
    (3)能用待定系数法,由已知条件求出圆的一般方程.
    (4)通过本节课学习,进一步把握配方法和待定系数法.
    教学重点:(1)用配方法,把圆的一般方程转化成标准方程,求出圆心和半径.
    (2)用待定系数法求圆的方程.
    教学难点:圆的一般方程特点的研究.
    教学用具:计算机.
    教学方法:启发引导法,讨论法.
    教学过程:
    引入
    前边已经学过了圆的标准方程
    把它展开得
    任何圆的方程都可以通过展开化成形如
    ①
    的方程
    问题1
    形如①的方程的曲线是否都是圆?
    师生共同讨论分析:
    假如①表示圆,那么它一定是某个圆的标准方程展开整理得到的.我们把它再写成原来的形式不就可以看出来了吗?运用配方法,得
    ②
    显然②是不是圆方程与 是什么样的数密切相关,具体如下:
    (1)当 时,②表示以 为圆心、以 为半径的圆;
    (2)当 时,②表示一个点 ;
    (3)当 时,②不表示任何曲线.
    总结:任意形如①的方程可能表示一个圆,也可能表示一个点,还有可能什么也不表示.
    圆的一般方程的定义:
    当 时,①表示以 为圆心、以 为半径的圆,
    此时①称作圆的一般方程.
    即称形如 的方程为圆的一般方程.
    问题2圆的一般方程的特点,与圆的标准方程的异同.
    (1) 和 的系数相同,都不为0.
    (2)没有形如 的二次项.
    圆的一般方程与一般的二元二次方程
    ③
    相比较,上述(1)、(2)两个条件仅是③表示圆的必要条件,而不是充分条件或充要条件.
    圆的一般方程与圆的标准方程各有千秋:
    (1)圆的标准方程带有明显的几何的影子,圆心和半径一目了然.
    (2)圆的一般方程表现出明显的代数的形式与结构,更适合方程理论的运用.
    实例分析
    例1:下列方程各表示什么图形.
    (1) ;
    (2) ;
    (3) .
    学生演算并回答12
    (1)表示点(0,0);
    (2)配方得 ,表示以 为圆心,3为半径的圆;
    (3)配方得 ,当 、 同时为0时,表示原点(0,0);当 、 不同时为0时,表示以 为圆心, 为半径的圆.
    例2:求过三点 , , 的圆的方程,并求出圆心坐标和半径.
    分析:由于学习了圆的标准方程和圆的一般方程,那么本题既可以用标准方程求解,也可以用一般方程求解.
    解:设圆的方程为
    因为 、 、 三点在圆上,则有
    解得: , ,
    所求圆的方程为
    可化为
    圆心为 ,半径为5.
    请同学们再用标准方程求解,比较两种解法的区别.
    概括总结通过学生讨论,师生共同总结:
    (1)求圆的方程多用待定系数法.其步骤为:由题意设方程(标准方程或一般方程);根据条件列出关于待定系数的方程组;解方程组求出系数,写出方程.
    (2)如何选用圆的标准方程和圆的一般方程.一般地,易求圆心和半径时,选用标准方程;假如给出圆上已知点,可选用一般方程.
    下面再看一个问题:
    例3: 经过点 作圆 的割线,交圆 于 、 两点,求线段 的中点 的轨迹.
    解:圆 的方程可化为 ,其圆心为 ,半径为2.设 是轨迹上任意一点.
    ∵
    ∴
    即
    化简得
    点 在曲线上,并且曲线为圆 内部的一段圆弧.
    练习巩固
    (1)方程 表示的曲线是以 为圆心,4为半径的圆.求 、 、 的值.(结果为4,-6,-3)
    (2)求经过三点 、 、 的圆的方程.
    分析:用圆的一般方程,代入点的坐标,解方程组得圆的方程为 .
    (3)课本第79页练习1,2.
    小结师生共同总结:
    (1)圆的一般方程及其特点.
    (2)用配方法化圆的一般方程为圆的标准方程,求圆心坐标和半径.
    (3)用待定系数法求圆的方程.
    作业课本第82页5,6,7,8.
    板书设计
    圆的一般方程
    圆的一般方程
    例1:
    例2:
    例3:
    练习:
    小结:
    作业:12

本文来源:https://jiaoan.jxxyjl.com/gaoershuxuejiaoan/19211.html

  • 算术平均数和几何平均数的不等式_算术平均数与几何平均数(一)

    教学目标 (1)掌握“两个正数的算术平均数不小于它们的几何平均数”这一重要定理; (2)能运用定理证明不等式及求一些函数的最值; (3)能够解决一些简单的实际问题; (4)通过对不等式的结构的分析及特征的把握掌握重要不等式的联系; (5)通过对重要不等式的证明和等号成立的条件的分析,培养学生严谨科...

    发布于:2025-11-23

    详细阅读
  • 算术平均数和几何平均数的不等式_算术平均数与几何平均数(二)

    第一课时一、教材分析 (一)教材所处的地位和作用 “算术平均数与几何平均数”是全日制普通高级中学教科书(试验修订本·必修)数学第二册(上)“不等式”一章的内容,是在学完不等式性质的基础上对不等式的进一步研究.本节内容具有变通灵活性、应用广泛性、条件约束性等特点,所以本节内容是培养学生应用...

    发布于:2025-11-23

    详细阅读
  • 曲线和方程_曲线和方程

    教学目标 (1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题. (2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念. (3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点. (4)通过求曲线方程的教学,培养学生的转...

    发布于:2025-11-23

    详细阅读
  • 不等式的性质二是什么|不等式的性质(二)

    第二课时教学目标 1.理解同向不等式,异向不等式概念; 2.掌握并会证明定理1,2,3; 3.理解定理3的推论是同向不等式相加法则的依据,定理3是移项法则的依据; 4.初步理解证明不等式的逻辑推理方法 教学重点:定理1,2,3的证明的证明思路和推导过程教学难点 :理解证明不等式的逻辑推理方法教学...

    发布于:2025-11-23

    详细阅读
  • [直线的倾斜角和斜率教案]直线的倾斜角和斜率

    教学目标 (1)了解直线方程的概念. (2)正确理解直线倾斜角和斜率概念.理解每条直线的倾斜角是唯一的,但不是每条直线都存在斜率. (3)理解公式的推导过程,掌握过两点的直线的斜率公式. (4)通过直线倾斜角概念的引入和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交...

    发布于:2025-11-22

    详细阅读
  • 算术平均数和几何平均数的不等式_算术平均数与几何平均数(二)

    第一课时一、教材分析 (一)教材所处的地位和作用 “算术平均数与几何平均数”是全日制普通高级中学教科书(试验修订本·必修)数学第二册(上)“不等式”一章的内容,是在学完不等式性质的基础上对不等式的进一步研究.本节内容具有变通灵活性、应用广泛性、条件约束性等特点,所以本节内容是培养学生应用...

    发布于:2025-11-22

    详细阅读
  • [简单的线性规划教案]简单的线性规划(二)

    线性规划教学设计方案(二)教学目标 巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值.重点难点 理解二元一次不等式表示平面区域是教学重点. 如何扰实际问题转化为线性规划问题,并给出解答是教学难点.教学步骤【新课引入】 我们知道,二元一次不等式和二元一次不等式组都表示平面...

    发布于:2025-11-22

    详细阅读
  • [二阶琴生不等式的证明]不等式的证明(二)

    第二课时教学目标 1.进一步熟练掌握比较法证明不等式; 2.了解作商比较法证明不等式; 3.提高学生解题时应变能力 教学重点 比较法的应用教学难点 常见解题技巧教学方法 启发引导式教学活动 (一)导入 新课 (教师活动)教师打出字幕(复习提问),请三位同学回答问题,教师点评. (学生活动...

    发布于:2025-11-22

    详细阅读
  • 【简单的线性规划一】简单的线性规划(一)

    教学目标 (1)使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域; (2)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念; (3)了解线性规化问题的图解法,并能应用它解决一些简单的实际问题; (4)培养学生观察、联想以...

    发布于:2025-11-22

    详细阅读
  • 一元函数不等式的证明|不等式的证明(一)

    教学目标 (1)理解证明不等式的三种方法:比较法、综合法和分析法的意义; (2)掌握用比较法、综合法和分析法来证简单的不等式; (3)能灵活根据题目选择适当地证明方法来证不等式; (4)能用不等式证明的方法解决一些实际问题,培养学生分析问题、解决问题的能力; (6)通过不等式证明,培养学生逻辑推理...

    发布于:2025-11-22

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计