【椭圆的简单几何性质教案】椭圆的简单几何性质
【jiaoan.jxxyjl.com--高二数学教案】
椭圆的简单几何性质 (一)教学目标: (一)知识目标 椭圆的范围、对称性、对称轴、对称中心、离心率及顶点. (二)能力目标 1、使学生了解并掌握椭圆的范围。 2、使学生掌握椭圆的对称性,明确标准方程所表示的椭圆的对称轴、对称中心。 3、使学生掌握椭圆的定点坐标、长轴长、短轴长以及 的几何意义,明 确标准方程所表示的椭圆的截距。 4、使学生掌握离心率的定义及其几何意义。 (三)德育目标 使学生充分认识到数与形的联系,体会数与形的统一;通过对椭圆对称性的体验, 使学生得到美的感受,树立了对立统一的辩证唯物主义观点。 教学重点:椭圆的简单几何性质 教学难点:教学难点是利用曲线方程研究椭圆的几何性质,这是第一次用代数的方法研究 几何图形的性质。 教具准备:幻灯片两张、三角板 教学方法:师生共同讨论法 借助多媒体教学手段,创设问题情景,通过师生的共同讨论研究,学生的亲身实 践体验,使学生明确椭圆的几何性质的研究方法,加强对性质的理解,掌握椭圆 的几何性质。 教学过程一、课题导入前面我们给同学们讲到:我国科学院在1997年准确地预测了海尔.波普彗星将接近地球,并预测30XX年后,它还将光临地球上空。通过学习,我们知道海尔波普彗星运行的轨道是一个椭圆,天文学家通过观察它运行中的一些有关数据,可以推算出它的运行轨道的方程,从而算出它的周期及轨道的周长。现在假设我告诉你这颗彗星的运行轨道的方程,你能做出它的运行轨迹吗?当然描点法可以做出来,只要取足够多的点,图像就可以足够准确,但是很显然这种方法很麻烦,那么有没有简单一点的方法呢。实际上我们知道,对于画一个二次函数的图像我只需要作出它的对称轴以及一些关键的点,我们就可以比较准确地画出它的图像。同样,如果我们能搞清楚椭圆的几何性质,就可以从整体上把握曲线的形状、大小、位置。这也是我们今天要给同学们讲的椭圆的几何性质。 二、讲授新课对于椭圆的标准方程 进行讨论。 1、范围通过观察图像得出椭圆的范围(学生自己做) 提问:能从椭圆的标准方程中找出椭圆的范围吗? 由于方程中两个非负数的和等于1,所以,椭圆上任一点的坐标 适合不等式 这说明椭圆位于直线 所围成的矩形里。从函数的思想出发,我们也可以对椭圆的范围进行分析:椭圆的标准方程可以化为两个函数 ,对他们的定义域、值域分别进行讨论可得 ,即椭圆位于直线 所围成的矩形里。 2、对称性 在曲线的方程里,我们知道:如果以 代 方程不变,那么当点 在曲线上时,它关于 轴的对称点 也在曲线上,所以区县关于 轴对称,同理,如果以 代 方程不变,那么曲线关于 轴对称,如果同时以 代 ,以 代 方程不变,那么曲线关于原点对称。提问:那么椭圆关于哪些对称呢?由于在椭圆的标准方程里,以 代 ,或以 代 ,或 、 分别代 、 ,方程都不变,所以椭圆关于 轴、 轴和原点都是对称的。这时坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫椭圆的中心。 3、顶点 在椭圆的标准方程里,令 ,得 。同理令 ,我们把 这四个点叫做椭圆的顶点。线段 分别叫做椭圆的长轴和短轴。他们的长分别等于 , 分别叫做椭圆的长半轴长和短半轴长。至此, 三者都有了几何意义,他们分别是长半轴长、短半轴长、半焦距。 由椭圆的对称性可知,椭圆短轴的端点到两个焦点的距离相等,且等于长半轴长,即 ,即 ,这就是在第8.1节中令 的几何意义。 4.离心率定义:椭圆的焦距与长轴长的比 ,叫做椭圆的离心率。 因为a>c>0,所以0<e<1. 问题 :观察图形,说明当离心率e变化时,椭圆形状是怎样随之变化的? 得出结论:(1)e越接近1时,则c越接近a,从而b越小,因此椭圆越扁; (2)e越接近0时,则c越接近0,从而b越接近于a,这时椭圆就越接近于圆。当且仅当a=b时,c=0,这时两个焦点重合于椭圆的中心,图形变成圆。当e=1时,图形变成了一条线段。[为什么?留给学生课后思考] 三、例题讲解12例1求椭圆 的长轴和短轴的长、离心率、焦点和顶点的坐标,并用描点法画出它的图形. 分析:[根据刚刚学过的椭圆的几何性质知,椭圆长轴长2a,短轴长2b,该方程中的a=?b=?c=?因为题目给出的椭圆方程不是标准方程,所以必须先把它转化为标准方程,再讨论它的几何性质] 解:把已知方程化为标准方程 , 这里a=5,b=4,所以c= =3 因此,椭圆的长轴和短轴长分别是2a=10,2b=8 离心率e= = 两个焦点分别是f1(-3,0),f2(3,0),四个顶点分别是a1(-5,0) a1(5,0) a1(0,-4) f1(0,4). [提问:怎样用描点法画出椭圆的图形呢?我们可以根据椭圆的对称性,先画出第一象限内的图形。] 将已知方程变形为 ,根据 在0≤x≤5的范围内算出几个点的坐标(x,y)x
0
1
2
3
4
5
y
4
3.9
3.7
3.2
2.4
0
先描点画出椭圆的一部分,再利用椭圆的对称性画出整个椭圆(如图) 说明:本题在画图时,利用了椭圆的对称性。利用图形的几何性质,可以简化画图过程,保证图形的准确性。根据椭圆的几何性质,用下面的方法可以快捷地画出反映椭圆基本形状和大小的草图: (1) 以椭圆的长轴、短轴为邻边画矩形; (2) 由矩形四边的中点确定椭圆的四个顶点; (3) 用平滑的曲线将四个顶点连成一个椭圆。 [画图时要注意它们的对称性及顶点附近的平滑性] (四)练习 填空:已知椭圆的方程是 (1) 将其化为标准方程是_________________. (2) a=___,b=___,c=___. (3) 椭圆位于直线________和________所围成的________区域里. (4) 椭圆的长轴、短轴长分别是____和____,离心率e=_____,两个焦点分别是_______、______,四个顶点分别是______、______、______、_______. (五)焦点在x轴、y轴上的椭圆的几何性质对比. 三、小结(1)理解椭圆的简单几何性质,给出方程会求椭圆的焦点、顶点和离心率; (2)了解离心率变化对椭圆形状的影响; (3)通过曲线的方程研究曲线的几何性质并画图是解析几何的基本方法. 四、布置作业 p102 2、3题 p103习题8.2---1、2、3,第3题为书面作业.12-
算术平均数和几何平均数的不等式_算术平均数与几何平均数(一)详细阅读
教学目标 (1)掌握“两个正数的算术平均数不小于它们的几何平均数”这一重要定理; (2)能运用定理证明不等式及求一些函数的最值; (3)能够解决一些简单的实际问题; (4)通过对不等式的结构的分析及特征的把握掌握重要不等式的联系; (5)通过对重要不等式的证明和等号成立的条件的分析,培养学生严谨科...
-
算术平均数和几何平均数的不等式_算术平均数与几何平均数(二)详细阅读
第一课时一、教材分析 (一)教材所处的地位和作用 “算术平均数与几何平均数”是全日制普通高级中学教科书(试验修订本·必修)数学第二册(上)“不等式”一章的内容,是在学完不等式性质的基础上对不等式的进一步研究.本节内容具有变通灵活性、应用广泛性、条件约束性等特点,所以本节内容是培养学生应用...
-
曲线和方程_曲线和方程详细阅读
教学目标 (1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题. (2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念. (3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点. (4)通过求曲线方程的教学,培养学生的转...
-
不等式的性质二是什么|不等式的性质(二)详细阅读
第二课时教学目标 1.理解同向不等式,异向不等式概念; 2.掌握并会证明定理1,2,3; 3.理解定理3的推论是同向不等式相加法则的依据,定理3是移项法则的依据; 4.初步理解证明不等式的逻辑推理方法 教学重点:定理1,2,3的证明的证明思路和推导过程教学难点 :理解证明不等式的逻辑推理方法教学...
-
[直线的倾斜角和斜率教案]直线的倾斜角和斜率详细阅读
教学目标 (1)了解直线方程的概念. (2)正确理解直线倾斜角和斜率概念.理解每条直线的倾斜角是唯一的,但不是每条直线都存在斜率. (3)理解公式的推导过程,掌握过两点的直线的斜率公式. (4)通过直线倾斜角概念的引入和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交...
-
算术平均数和几何平均数的不等式_算术平均数与几何平均数(二)详细阅读
第一课时一、教材分析 (一)教材所处的地位和作用 “算术平均数与几何平均数”是全日制普通高级中学教科书(试验修订本·必修)数学第二册(上)“不等式”一章的内容,是在学完不等式性质的基础上对不等式的进一步研究.本节内容具有变通灵活性、应用广泛性、条件约束性等特点,所以本节内容是培养学生应用...
-
[简单的线性规划教案]简单的线性规划(二)详细阅读
线性规划教学设计方案(二)教学目标 巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值.重点难点 理解二元一次不等式表示平面区域是教学重点. 如何扰实际问题转化为线性规划问题,并给出解答是教学难点.教学步骤【新课引入】 我们知道,二元一次不等式和二元一次不等式组都表示平面...
-
[二阶琴生不等式的证明]不等式的证明(二)详细阅读
第二课时教学目标 1.进一步熟练掌握比较法证明不等式; 2.了解作商比较法证明不等式; 3.提高学生解题时应变能力 教学重点 比较法的应用教学难点 常见解题技巧教学方法 启发引导式教学活动 (一)导入 新课 (教师活动)教师打出字幕(复习提问),请三位同学回答问题,教师点评. (学生活动...
-
【简单的线性规划一】简单的线性规划(一)详细阅读
教学目标 (1)使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域; (2)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念; (3)了解线性规化问题的图解法,并能应用它解决一些简单的实际问题; (4)培养学生观察、联想以...
-
一元函数不等式的证明|不等式的证明(一)详细阅读
教学目标 (1)理解证明不等式的三种方法:比较法、综合法和分析法的意义; (2)掌握用比较法、综合法和分析法来证简单的不等式; (3)能灵活根据题目选择适当地证明方法来证不等式; (4)能用不等式证明的方法解决一些实际问题,培养学生分析问题、解决问题的能力; (6)通过不等式证明,培养学生逻辑推理...