平移与旋转教学内容分析|教学内容:平移的妙用 —— 初中数学第三册教案
【jiaoan.jxxyjl.com--八年级数学教案】
教学内容:平移的妙用
乐至高寺中学 罗勇
教学目标 :
一、知识与能力目标
1、要求学生掌握平移的基本特征
2、能在理解平移性质的基础上巧妙运用的平移的知识来解决日常生活中的数学问题。
二 、过程与方法目标:
1、引导学生概括平移的基本特征。
2、引导学生平移实例中的图形,探索运用平移知识解决实际问题。
3、引导学生亲自动手尝试对平移的再探索,发现平移的妙用!
三、情感与态度目标:
1、 通过学生自己观察发现,培养学生对数学的兴趣。
2、通过学生亲自操作并解决问题,让学生了解学习探索中的艰辛与成功的乐趣。从而帮助他们树立学习数学的正确态度。
3、让学生在生活中观察应用例子,从而让他们体会到数学中的图形美。
教学重点、难点及教学突破
重点:平移特征---------平移中的不变量
难点:对图形进行理解和平移
教学突破:从实例入手,让学生思考小学解答方法,从而引导学生观察:能否进行平移。引导学生进行平移,从而让学生多平移角度来解决问题;引导学生再探索,让学生的妙用得到升发。
教学准备:学生复习平移特征,准备纸笔和画图工具。
教师用小黑板准备例题。
教师活动
学生活动
活动说明
一、复习平移的概念及特征;
教师:同学们,本期11.1学习了平移,同学们想想:什么叫平移?平移的二要素是什么?平移的特征是什么?
1. 学生思考后,教师抽学生回答
学生:图形的平行移动叫平移
平移的二要素是:方向和距离
平移的特征:
平移后的图形与原来的图形的对应线段平行且相等,对应角相等,图形的形状与大小都没有发生变化
如图:线段AB以如图所示的方向平移2cm.
通过复习平移的概念及特征,让学生更进一步加深对平移理解,为后面的探索作准备
二、创设情境,引出问题:
问题一、要在如图楼梯上铺设某种红地毯,已知,这种地毯每平方米售价为40元,楼梯梯道宽为3米,侧面如图所示。计算一下,购买这种地毯至少要多少钱?
学生采取小组合作学习,共同寻找解决此题的办法,教师引导学生应用平移知识进行平移
一通过平移发现,楼梯长实际就是
AA’+A’M=2.8+6.2=9米
这样便可计算出购买这种地毯至少要
(2.8+6.2)×3×40=1080元
平移是难点,教师引导学生平移,注意对平移后图形的理解
教师活动
学生活动
活动说明
问题二、从县城到石桥镇有两条路可走, 请你判断一下哪条路长一些?
教师提问:第①、②条路横向距离一样吗?纵向距离呢?
学生亲自动手平移。
学生回答:道路①的横向距离的和等于道路②的横向距离的和,道路①的纵向距离的和等于道路②的纵向距离的。
结论:①、②两条路一样长。
学生从表面上看总认为②比①要长。
因此,引导学生平移是难点,教师注意引导。
教师:从以上两个问题发现:平移在生活中是很重要的,生活中的许多问题可以应用平移的知识来解决。
学生相互讨论后得出:平移是有妙用的!
问题三、如图,在宽为20米,长为32米的长方形地面上修筑同样宽的两条互相垂直的道路余下的部分作为耕地,要使耕地面积为540米2.道路宽为多少米?
学生合作学习,讨论怎样解决这个问题,(可以用小学的方法解)
允许学生应用小学思维来解
教师活动
学生活动
活动说明
教师引导学生对阴影部分进行平移
教师讲解:
设道路宽为x米,则
(20―x)(32―x)=540
x2―52x+100=0
(x―50)(x―2)=0
x1=50(舍去)x 2=2
课堂作业 :
平移后的图形
设:道路宽为x米,引导学生表示出,除阴影部分外的小长方形的长为(32―x)米,宽为(20―x)米。
学生完成课堂作业
如图a,如果在问题三中,修筑同样宽的两条“之”字型路,如图所示,余下部分为耕地,要使耕地面积为540米2.道路宽是多少米?
解题方法由教师解,不必要求学生掌握(在以后的学习中再学)
教师活动
学生活动
活动说明
三、归纳与发现:
生活中的许多问题都可以用平移的知识来解决,现平移有许多妙用。
学生讨论感受平移的妙用。
让学生体会平移的妙用,给同学们带来的方便与快乐。
四、再探索:
教师出示小黑板:
学生合作探索完成下面内容:
解答问题:
① 设图②中矩形ACBD和矩形AEFB的面积分别为S1、S2则S1______S2(填“>”“<”“=”)
② 如图③中,△ABC为钝角△时,按如图要求可以画出____个矩形,请利用③把它画出来。
③ 如图④中△ABC为锐角△,BC>AC>AB,按要求可以画出____个矩形,利用④把它画出来
④ 在④中,所画出的矩形哪一个周长最小?
教学内容:平移的妙用
乐至高寺中学 罗勇
教学目标 :
一、知识与能力目标
1、要求学生掌握平移的基本特征
2、能在理解平移性质的基础上巧妙运用的平移的知识来解决日常生活中的数学问题。
二 、过程与方法目标:
1、引导学生概括平移的基本特征。
2、引导学生平移实例中的图形,探索运用平移知识解决实际问题。
3、引导学生亲自动手尝试对平移的再探索,发现平移的妙用!
三、情感与态度目标:
1、 通过学生自己观察发现,培养学生对数学的兴趣。
2、通过学生亲自操作并解决问题,让学生了解学习探索中的艰辛与成功的乐趣。从而帮助他们树立学习数学的正确态度。
3、让学生在生活中观察应用例子,从而让他们体会到数学中的图形美。
教学重点、难点及教学突破
重点:平移特征---------平移中的不变量
难点:对图形进行理解和平移
教学突破:从实例入手,让学生思考小学解答方法,从而引导学生观察:能否进行平移。引导学生进行平移,从而让学生多平移角度来解决问题;引导学生再探索,让学生的妙用得到升发。
教学准备:学生复习平移特征,准备纸笔和画图工具。
教师用小黑板准备例题。
教师活动
学生活动
活动说明
一、复习平移的概念及特征;
教师:同学们,本期11.1学习了平移,同学们想想:什么叫平移?平移的二要素是什么?平移的特征是什么?
1. 学生思考后,教师抽学生回答
学生:图形的平行移动叫平移
平移的二要素是:方向和距离
平移的特征:
平移后的图形与原来的图形的对应线段平行且相等,对应角相等,图形的形状与大小都没有发生变化
如图:线段AB以如图所示的方向平移2cm.
通过复习平移的概念及特征,让学生更进一步加深对平移理解,为后面的探索作准备
二、创设情境,引出问题:
问题一、要在如图楼梯上铺设某种红地毯,已知,这种地毯每平方米售价为40元,楼梯梯道宽为3米,侧面如图所示。计算一下,购买这种地毯至少要多少钱?
学生采取小组合作学习,共同寻找解决此题的办法,教师引导学生应用平移知识进行平移
一通过平移发现,楼梯长实际就是
AA’+A’M=2.8+6.2=9米
这样便可计算出购买这种地毯至少要
(2.8+6.2)×3×40=1080元
平移是难点,教师引导学生平移,注意对平移后图形的理解
教师活动
学生活动
活动说明
问题二、从县城到石桥镇有两条路可走, 请你判断一下哪条路长一些?
教师提问:第①、②条路横向距离一样吗?纵向距离呢?
学生亲自动手平移。
学生回答:道路①的横向距离的和等于道路②的横向距离的和,道路①的纵向距离的和等于道路②的纵向距离的。
结论:①、②两条路一样长。
学生从表面上看总认为②比①要长。
因此,引导学生平移是难点,教师注意引导。
教师:从以上两个问题发现:平移在生活中是很重要的,生活中的许多问题可以应用平移的知识来解决。
学生相互讨论后得出:平移是有妙用的!
问题三、如图,在宽为20米,长为32米的长方形地面上修筑同样宽的两条互相垂直的道路余下的部分作为耕地,要使耕地面积为540米2.道路宽为多少米?
学生合作学习,讨论怎样解决这个问题,(可以用小学的方法解)
允许学生应用小学思维来解
教师活动
学生活动
活动说明
教师引导学生对阴影部分进行平移
教师讲解:
设道路宽为x米,则
(20―x)(32―x)=540
x2―52x+100=0
(x―50)(x―2)=0
x1=50(舍去)x 2=2
课堂作业 :
平移后的图形
设:道路宽为x米,引导学生表示出,除阴影部分外的小长方形的长为(32―x)米,宽为(20―x)米。
学生完成课堂作业
如图a,如果在问题三中,修筑同样宽的两条“之”字型路,如图所示,余下部分为耕地,要使耕地面积为540米2.道路宽是多少米?
解题方法由教师解,不必要求学生掌握(在以后的学习中再学)
教师活动
学生活动
活动说明
三、归纳与发现:
生活中的许多问题都可以用平移的知识来解决,现平移有许多妙用。
学生讨论感受平移的妙用。
让学生体会平移的妙用,给同学们带来的方便与快乐。
四、再探索:
教师出示小黑板:
学生合作探索完成下面内容:
解答问题:
① 设图②中矩形ACBD和矩形AEFB的面积分别为S1、S2则S1______S2(填“>”“<”“=”)
② 如图③中,△ABC为钝角△时,按如图要求可以画出____个矩形,请利用③把它画出来。
③ 如图④中△ABC为锐角△,BC>AC>AB,按要求可以画出____个矩形,利用④把它画出来
④ 在④中,所画出的矩形哪一个周长最小?
本文来源:https://jiaoan.jxxyjl.com/banianjishuxuejiaoan/2169.html
-
中心对称和中心对称图形的区别_中心对称和中心对称图形详细阅读
教学建议 知识归纳 1.中心对称 把一个图形绕着某一点旋转 ,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形关于点对称也称中心对称,这两个图形中的对应点,叫做关于中心的对称点. 中心对称的两个图形具有如下性质:(1)关于中心对称的两个图形全等;(2)关于中...
-
[等腰三角形的判定]等腰三角形的判定详细阅读
知识结构: 重点与难点分析: 本节内容的重点是定理 本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点 推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关...
-
相似三角形的性质_相似三角形的性质 (第2课时)详细阅读
(第2课时) 一、教学目标 1.掌握相似三角形的性质定理2、3. 2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题. 3.进一步培养学生类比的教学思想. 4.通过相似性质的学习,感受图形和语言的和谐美 二、教法引导 先学后教,达标导学 三、重点及难点 1.教学重点:是性质定理的应用...
-
【二次根式的乘法】二次根式的乘法详细阅读
教学建议 知识结构: 重点难点分析: 本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简 积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础 二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起 本节难...
-
基本作图|基本作图详细阅读
教学目标 : 1、知识目标: (1)要掌握尺规作图的方法及一般步骤; (2)掌握五种,明确尺规作图的意义。 2、能力目标: (1)通过“作图题”练习,提高学生的几何语言表达能力; (2)通过画图,培养学生的作图能力及动手能力 3、情感目标: (1)体验数学语言的简洁严谨。 (2)体会数学作图语言和...
-
[二次根式的混合运算]二次根式的混合运算详细阅读
教学建议 知识结构 重难点分析 本节课的重点是二次根式的加、减、乘、除、乘方、开方的混合运算及分母有理化。它是以二次根式的概念和性质为基础,同时又紧密地联系着整式、分式的运算,也可以说它是运算问题在初中阶段一次总结性,提高性综合学习;二次根式的运算和有理化的方法与技巧,能够进一步开拓学生的解题思路...
-
多边形的内角和|多边形的内角和 教学设计示例3详细阅读
一、素质教育目标 (一)知识教学点 1.使学生掌握四边形的有关概念及四边形的内角和外角和定理. 2.了解四边形的不稳定性及它在实际生产,生活中的应用. (二)能力训练点 1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力. 2.通过推导四边形内角和定理,对学生渗透化归思想....
-
平行四边形的判定|平行四边形的判定 (第二课时)详细阅读
七、教学步骤 【引入新课】 由的定义和性质易得且,即“平行且相等”记为,反过来当时,四边形必为平行四边形,这就是今天要讲的判定定理4(写出课题). 【讲解新课】 (1)平行四边形的判定定理4:一组对边平行且相等的四边形是平行四边形. 引导学生结合图1,把已知,求证具体化. 分析:因为已知,所以只须...
-
[相似三角形的判定]相似三角形详细阅读
教学建议 知识结构 本节首先给出了的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理 重难点分析 的概念是本节的重点也是本节的难点 是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究比研究全等三角形更具有一般性 ...
-
【最简二次根式】最简二次根式 教学设计示例5详细阅读
教学目标 1.使学生进一步理解最简二次根式的概念; 2.较熟练地掌握把一个式子化为最简二次根式的方法. 教学重点和难点 重点:较熟练地把二次根式化为最简二次根式. 难点:把被开方数是多项式和分式的二次根式化为最简二次根式. 教学过程设计 一、复习 1.把下列各式化为最简二次根式: 请说出第(3),...