合比性质与等比性质|第四册合比性质和等比性质例

八年级数学教案 2012-11-07 网络整理 晴天

【jiaoan.jxxyjl.com--八年级数学教案】

教研课
教案设计
教者:龙秀明
教学课题:合比性质和等比性质
教学目标 :1、掌握合比性质的等比性质,并会用它们进行简单的比例变形
2、会将合比性质、等比性质用于比例线段。
3、提高学生类比联想、推广命题的能力。
教学重、难点:
熟练地、灵活地运用合比性质与等比性质。
课前准备:
小黑板、幻灯机及幻灯片。
教学过程 :
一、复习引入:
我们在前边学习了线段的比,比例的有关概念及性质,那么请同学们回忆
1、什么叫线段的比?
2、什么叫成比例线段?
我们还学习了比例的基本性质,那么,除此之外,比例还有一些什么性质呢?
这就是本节课我们将要研究的比例的合比性质与等比性质。(出示课题:合比性质与等比性质)
那么,通过本节课的学习我们要达到一个什么样的要求呢?(出示小黑板)看学习目标1、2,(全班同学齐读)
下边请同学们再回忆,我们在上一章学习的平等线等分线段定理是如何叙述的?(抽同学回答)
请看幻灯(投影显示)
二、(用特殊化方法)探索合比性质。
1、复习,已知:一组平行线在直线l上截得的线段AB=BC=CD=DE=EF则由平行线等分线段定理可得一个结论:即A´B´=B´C´=C´D´=D´E´=E´F´。
2、将上述结论改写成比例式,由此猜想得出结论,引导学生思考:如果设在l上截得的每一份为k,问AD=?DF=?

又设在l1上截得的一等份为m,问A´D´=?D´F´=?

观察以上分析,可得出一个什么样的结论?
又观察 与 有什么关系?对于一般的比例
式都有这一个关系吗?请猜一猜。
猜想:学生口述(同学间可相互讨论、研究)
教师根据学生口述、写出:
如果
3、证明猜想,得出合比性质,
我们这个猜想,是否正确呢?
(1)启发学生观察,已知与未知的关系,寻找证明思路,证法一:(设比法)



证法二、(利用等比性质2)
∵     ∴    ∴
(2)类比联想,得到分比性质。
如果
学生自由讨论,可仿上边自己证明结论。
在今后,这两种情形都叫合比性质,即
如果
(3)理解合比性质的内容,师生一起用文字语言叙述。
4、类比联想,将合比性质推广。
在合比性质的表达式中,
(1)比例的二、四项保持不变,
(2)比例的前后磺对应求和或差,作为新比例式的第一、三比例项。
由此,可作出以下类比联想,并使用比例的基本性质进行证明。
猜想一,(教师引导)  如果
二    ……       如果
三    ……       如果 等等。
对这几个猜想出来的问题,其基本思考方法有两种:
(1)通过一定的方法,将它们变形利用合比性质的结果,证明时,可灵活运用以下变形方法。
①同时交换比例的内或外项,(更比)
如果
②同时交换比例的前后项,(反比)
如果
比如证明猜想三,如果         
(2)对原合比性质的证明方法进行类比、联想来进行证明(设比法)
三、利用合比性质来证明等比性质的特例,并推广。
1、练习(投影显示)
证明:
2、观察上述练习的两个结论,并对一般情况作出猜想,对练习中相等的比值的比个数进行推广。
如果
3、利用设比法进行证明,得出等比性质,同学们自己练习,后与教材P20对比。
4、强调证明方法“设比法”。
设几个相等的比值为k,用它们表示出每个比的前项(或后项)利用代数运算证明比例问题,这种思想方法在比例问题中经常用到。
四、简单运用(出示小黑板)
(1)已知:         ,       
(2)已知:       
(3)已知:        =      
注意:①合比性质与等比性质的证明方法和结论都很重要,都可用来证明有关比例式的问题。如第三题一问
解法1、   
解法2、
第二问可用解法2。
② 还常以另一种形式出现,即x:y:z=4:3:6但此时不能设 。
五、师生共同小结,看书完成P203练习
1、合比性质,等比性质及常用变形,尤其注意等比性质的使用条件。
2、证明两个性质时所用到的“设比法”的证明方法。
3、类比联想,推广命题,由特殊到一般,再进行证明的方法。
六、练习:(1)已知 求 的值;
(2)已知 求 的值;
(3)已知 求 的值;
(4)已知 试求 的值。
由(4)题思考通过作第(4)题得出结论,结合前边所学内容猜想,你能得出什么结论,并试证之。
板书设计 :
合比性质与等比性质
1、合比性质:         2、等比性质:       小黑板①②③
内容                  内容                小结1、
证明:                证明:                  2、
推广①                推广

本文来源:https://jiaoan.jxxyjl.com/banianjishuxuejiaoan/2168.html

  • 中心对称和中心对称图形的区别_中心对称和中心对称图形

    教学建议 知识归纳 1.中心对称 把一个图形绕着某一点旋转 ,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形关于点对称也称中心对称,这两个图形中的对应点,叫做关于中心的对称点. 中心对称的两个图形具有如下性质:(1)关于中心对称的两个图形全等;(2)关于中...

    发布于:2025-11-06

    详细阅读
  • [等腰三角形的判定]等腰三角形的判定

    知识结构: 重点与难点分析: 本节内容的重点是定理 本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点 推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关...

    发布于:2025-11-06

    详细阅读
  • 相似三角形的性质_相似三角形的性质 (第2课时)

    (第2课时) 一、教学目标 1.掌握相似三角形的性质定理2、3. 2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题. 3.进一步培养学生类比的教学思想. 4.通过相似性质的学习,感受图形和语言的和谐美 二、教法引导 先学后教,达标导学 三、重点及难点 1.教学重点:是性质定理的应用...

    发布于:2025-11-06

    详细阅读
  • 【二次根式的乘法】二次根式的乘法

    教学建议 知识结构: 重点难点分析: 本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简 积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础 二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起 本节难...

    发布于:2025-11-06

    详细阅读
  • 基本作图|基本作图

    教学目标 : 1、知识目标: (1)要掌握尺规作图的方法及一般步骤; (2)掌握五种,明确尺规作图的意义。 2、能力目标: (1)通过“作图题”练习,提高学生的几何语言表达能力; (2)通过画图,培养学生的作图能力及动手能力 3、情感目标: (1)体验数学语言的简洁严谨。 (2)体会数学作图语言和...

    发布于:2025-11-06

    详细阅读
  • [二次根式的混合运算]二次根式的混合运算

    教学建议 知识结构 重难点分析 本节课的重点是二次根式的加、减、乘、除、乘方、开方的混合运算及分母有理化。它是以二次根式的概念和性质为基础,同时又紧密地联系着整式、分式的运算,也可以说它是运算问题在初中阶段一次总结性,提高性综合学习;二次根式的运算和有理化的方法与技巧,能够进一步开拓学生的解题思路...

    发布于:2025-11-06

    详细阅读
  • 多边形的内角和|多边形的内角和 教学设计示例3

    一、素质教育目标 (一)知识教学点 1.使学生掌握四边形的有关概念及四边形的内角和外角和定理. 2.了解四边形的不稳定性及它在实际生产,生活中的应用. (二)能力训练点 1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力. 2.通过推导四边形内角和定理,对学生渗透化归思想....

    发布于:2025-11-06

    详细阅读
  • 平行四边形的判定|平行四边形的判定 (第二课时)

    七、教学步骤 【引入新课】 由的定义和性质易得且,即“平行且相等”记为,反过来当时,四边形必为平行四边形,这就是今天要讲的判定定理4(写出课题). 【讲解新课】 (1)平行四边形的判定定理4:一组对边平行且相等的四边形是平行四边形. 引导学生结合图1,把已知,求证具体化. 分析:因为已知,所以只须...

    发布于:2025-11-06

    详细阅读
  • [相似三角形的判定]相似三角形

    教学建议 知识结构 本节首先给出了的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理 重难点分析 的概念是本节的重点也是本节的难点 是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究比研究全等三角形更具有一般性 ...

    发布于:2025-11-06

    详细阅读
  • 【最简二次根式】最简二次根式 教学设计示例5

    教学目标 1.使学生进一步理解最简二次根式的概念; 2.较熟练地掌握把一个式子化为最简二次根式的方法. 教学重点和难点 重点:较熟练地把二次根式化为最简二次根式. 难点:把被开方数是多项式和分式的二次根式化为最简二次根式. 教学过程设计 一、复习 1.把下列各式化为最简二次根式: 请说出第(3),...

    发布于:2025-11-06

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计