[八年级上册数学线段角的轴对称性]八年级上册《线段、角的轴对称性》4导学设计
【jiaoan.jxxyjl.com--八年级数学教案】
学目标
1.能利用所学知识提出问题并能解决实际问题;
2.能利用角平分线性质定理和逆定理证明相关结论,做到每一步有根有据;
3.经历探索角的轴对称应用的过程,在解决问题的过程中培养思考的严谨性和表达的条理性.
教学重点
综合运用角平分线的性质定理和逆定理解决问题.
教学难点
学会证明点在角平分线上.
教学过程(教师)
学生活动
设计思路
开场白
同学们,上节课我们知道了“角平分线上的点到角两边距离相等”,而且“角的内部到角两边距离相等的点在角的平分线上”.这两个定理能用来解决什么问题呢?
回忆、思考.
点明课题,制造悬念,激发学生的学习热情.
例2 已知:△abc的两内角∠abc、∠acb的角平分线相交于点p.求证:点p在∠a的角平分线上.
分析:要证明点p在∠a的角平分线上,根据角的内部到角两边距离相等的点在角平分线上,只要点p到∠a两边的距离相等,所以过点p做两边的垂线段pd、pe,证出pd=pe,而要证pd=pe,因为点p是∠abc、∠acb的角平分线的交点,根据角平分线的性质,点p到∠abc、∠acb两边的距离都相等,所以只要做出bc边上的垂线段pf,就可得pd=pf,pe=pf,从而pd=pe,所以得证.
通过解决上述问题,你发现三角形的三个内角的角平分线有什么位置关系?
1.结合图形认真审题.
2.分析、讨论证明思路.
3.口述证明思路及证明过程.
4.讨论归纳得到结论:三角形
的三个内角的角平分线相交于一点.
运用例题引导学生逐渐学会综合利用性质定理和逆定理.
采用“要证,只要证”的思考方法引导学生逐步学会“分析法”.
问题解决完后及时进行小结归纳,得出三角形“内心”,为学习三角形的内切圆打好基础.
例3 已知:如图2-28,ad是△abc的角平分线,de⊥ab,dfac,垂足为e、f.求证:ad垂直平分ef.
分析:要证ad垂直平分ef,
只要证: , .
已知 ∠bad=∠cad, de⊥ab,dfac,
只要证 ,
只要证 .
……
学生利用分析法填空;
阐述证明思路;
完成证明过程.
利用分析法引导学生学会分析问题,培养学生良好的思考习惯.
开放的分析过程,提供了多样化的思考路径.
指导学生完成练习.
解完题后,说说你的发现,提出你的问题.
练习:课本p56练习.
学生发现:三角形两外角的角平分线与第三个角的角平分线所在的直线相交于一点;可能提出“三角形三个外角的角平分线所在直线是否相交于一点的问题”.
本题是角平分线性质定理和逆定理的综合应用,实际上是例2的变式应用.
学生“一折,二画,三验证”有利于学生动手操作,获得成功,调动学生学习的积极性,再次鼓励学生使用逆推的思路寻找证明方法.
布置作业
课本p58-59习题2.4,分析第9、10、11题的思路,任选2题写出过程.
学生根据自身实际情况,选题作业.
实行作业分层,便于不同发展水平的学生自我发展.
本文来源:https://jiaoan.jxxyjl.com/banianjishuxuejiaoan/1851.html
-
中心对称和中心对称图形的区别_中心对称和中心对称图形详细阅读
教学建议 知识归纳 1.中心对称 把一个图形绕着某一点旋转 ,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形关于点对称也称中心对称,这两个图形中的对应点,叫做关于中心的对称点. 中心对称的两个图形具有如下性质:(1)关于中心对称的两个图形全等;(2)关于中...
-
[等腰三角形的判定]等腰三角形的判定详细阅读
知识结构: 重点与难点分析: 本节内容的重点是定理 本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点 推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关...
-
相似三角形的性质_相似三角形的性质 (第2课时)详细阅读
(第2课时) 一、教学目标 1.掌握相似三角形的性质定理2、3. 2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题. 3.进一步培养学生类比的教学思想. 4.通过相似性质的学习,感受图形和语言的和谐美 二、教法引导 先学后教,达标导学 三、重点及难点 1.教学重点:是性质定理的应用...
-
【二次根式的乘法】二次根式的乘法详细阅读
教学建议 知识结构: 重点难点分析: 本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简 积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础 二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起 本节难...
-
基本作图|基本作图详细阅读
教学目标 : 1、知识目标: (1)要掌握尺规作图的方法及一般步骤; (2)掌握五种,明确尺规作图的意义。 2、能力目标: (1)通过“作图题”练习,提高学生的几何语言表达能力; (2)通过画图,培养学生的作图能力及动手能力 3、情感目标: (1)体验数学语言的简洁严谨。 (2)体会数学作图语言和...
-
[二次根式的混合运算]二次根式的混合运算详细阅读
教学建议 知识结构 重难点分析 本节课的重点是二次根式的加、减、乘、除、乘方、开方的混合运算及分母有理化。它是以二次根式的概念和性质为基础,同时又紧密地联系着整式、分式的运算,也可以说它是运算问题在初中阶段一次总结性,提高性综合学习;二次根式的运算和有理化的方法与技巧,能够进一步开拓学生的解题思路...
-
多边形的内角和|多边形的内角和 教学设计示例3详细阅读
一、素质教育目标 (一)知识教学点 1.使学生掌握四边形的有关概念及四边形的内角和外角和定理. 2.了解四边形的不稳定性及它在实际生产,生活中的应用. (二)能力训练点 1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力. 2.通过推导四边形内角和定理,对学生渗透化归思想....
-
平行四边形的判定|平行四边形的判定 (第二课时)详细阅读
七、教学步骤 【引入新课】 由的定义和性质易得且,即“平行且相等”记为,反过来当时,四边形必为平行四边形,这就是今天要讲的判定定理4(写出课题). 【讲解新课】 (1)平行四边形的判定定理4:一组对边平行且相等的四边形是平行四边形. 引导学生结合图1,把已知,求证具体化. 分析:因为已知,所以只须...
-
[相似三角形的判定]相似三角形详细阅读
教学建议 知识结构 本节首先给出了的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理 重难点分析 的概念是本节的重点也是本节的难点 是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究比研究全等三角形更具有一般性 ...
-
【最简二次根式】最简二次根式 教学设计示例5详细阅读
教学目标 1.使学生进一步理解最简二次根式的概念; 2.较熟练地掌握把一个式子化为最简二次根式的方法. 教学重点和难点 重点:较熟练地把二次根式化为最简二次根式. 难点:把被开方数是多项式和分式的二次根式化为最简二次根式. 教学过程设计 一、复习 1.把下列各式化为最简二次根式: 请说出第(3),...