[八年级数学上册第十四章题含答案]八年级数学上册第十四章期末复习提纲
【jiaoan.jxxyjl.com--八年级数学教案】
第十四章 一次函数
一.常量、变量:
在一个变化过程中,数值发生变化的量叫做 变量 ;数值始终不变的量叫做 常量 ;
二、函数的概念:
函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.
三、函数中自变量取值范围的求法:
(1).用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
(3)用寄次根式表示的函数,自变量的取值范围是全体实数。
用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一 切实数。
(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。
(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。
四、 函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.
五、用描点法画函数的图象的一般步骤
1、列表(表中给出一些自变量的值及其对应的函数值。)
注意:列表时自变量由小到大,相差一样,有时需对称。
2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。
六、函数有三种表示形式:
(1)列表法 (2)图像法 (3)解析式法
七、正比例函数与一次函数的概念:
一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。
一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数.
当b =0 时,y=kx+b 即为 y=kx,所以正比例函数,是一次函数的特例.
八、正比例函数的图象与性质:
(1)图象:正比例函数y= kx (k 是常数,k≠0)) 的图象是经过原点的一条直线,我们称它为直线y= kx 。
(2)性质:当k>0时,直线y= kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y= kx经过二,四象限,从左向右下降,即随着 x的增大y反而减小。
九、求函数解析式的方法:
待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。
1. 一次函数与一元一次方程:从“数”的角度看x为何值时函数y= ax+b的值为0.
2. 求ax+b=0(a, b是常数,a≠0)的解,从“形”的角度看,求直线y= ax+b与 x 轴交点的横坐标
3. 一次函数与一元一次不等式:
解不等式ax+b>0(a,b是常数,a≠0) .从“数”的角度看,x为何值时函数y= ax+b的值大于0.
4. 解不等式ax+b>0(a,b是常数,a≠0) . 从“形”的角度看,求直线y= ax+b在 x 轴上方的部分(射线)所对应的的横坐标的取值范围.
十、一次函数与正比例函数的图象与性质
一 次 函 数
概 念 如果y=kx+b(k、b是常数,k≠0),那么y叫x的一次函数.当b=0时,一次函数y=kx(k≠0)也叫正比例函数.
图 像 一条直线
性 质 k>0时,y随x的增大(或减小)而增大(或减小);
k<0时,y随x的增大(或减小)而减小(或增大). 123
直线y=kx+b(k≠0)的位置与k、b符号之间的关系. (1)k>0,b>0; (2)k>0,b<0;
(3)k>0,b=0 (4)k<0,b>0;
(5)k<0,b<0 (6)k<0,b=0
一次函数表达式的确定 求一次函数y=kx+b(k、b是常数,k≠0)时,需要由两个点来确定;求正比例函数y=kx(k≠0)时,只需一个点即可.
5.一次函数与二元一次方程组:
解方程组
从“数”的角度看,自变量(x)为何值时两个函数的值相等.并求出这
个函数值
解方程组
从“形”的角度看,确定两直线交点的坐标.
第十五章 整式乘除与因式分解
一.回顾知识点
1、主要知识回顾:
幂的运算性质:
am?an=am+n (m、n为正整数)
同底数幂相乘,底数不变,指数相加.
= amn (m、n为正整数)
幂的乘方,底数不变,指数相乘.
(n为正整数)
积的乘方等于各因式乘方的积.
= am-n (a≠0,m、n都是正整数,且m>n)
同底数幂相除,底数不变,指数相减.
零指数幂的概念:
a0=1 (a≠0)
任何一个不等于零的数的零指数幂都等于l.
负指数幂的概念:
a-p= (a≠0,p是正整数)
任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数.
也可表示为: (m≠0,n≠0,p为正整数)
单项式的乘法法则:
单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
单项式与多项式的乘法法则:
单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.
多项式与多项式的乘法法则:
多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.
单项式的除法法则:
单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.
多项式除以单项式的法则:
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.
2、乘法公式:
①平方差公式:(a+b)(a-b)=a2-b2
文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.
②完全平方公式:(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.
3、因式分解:
因式分解的定义.
把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.
掌握其定义应注意以下几点:
(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;
(2)因式分解必须是恒等变形;
(3)因式分解必须分解到每个因式都不能分解为止.
弄清因式分解与整式乘法的内在的关系.
因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.
二、熟练掌握因式分解的常用方法.
1、提公因式法
(1)掌握提公因式法的概念;
(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;
(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.123
(4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.
2、公式法 :运用公式法分解因式的实质是把整式中的乘法公式反过来使用;
常用的公式:①平方差公式:a2-b2= (a+b)(a-b)②完全平方公式:a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2
本文来源:https://jiaoan.jxxyjl.com/banianjishuxuejiaoan/1842.html
-
中心对称和中心对称图形的区别_中心对称和中心对称图形详细阅读
教学建议 知识归纳 1.中心对称 把一个图形绕着某一点旋转 ,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形关于点对称也称中心对称,这两个图形中的对应点,叫做关于中心的对称点. 中心对称的两个图形具有如下性质:(1)关于中心对称的两个图形全等;(2)关于中...
-
[等腰三角形的判定]等腰三角形的判定详细阅读
知识结构: 重点与难点分析: 本节内容的重点是定理 本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点 推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关...
-
相似三角形的性质_相似三角形的性质 (第2课时)详细阅读
(第2课时) 一、教学目标 1.掌握相似三角形的性质定理2、3. 2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题. 3.进一步培养学生类比的教学思想. 4.通过相似性质的学习,感受图形和语言的和谐美 二、教法引导 先学后教,达标导学 三、重点及难点 1.教学重点:是性质定理的应用...
-
【二次根式的乘法】二次根式的乘法详细阅读
教学建议 知识结构: 重点难点分析: 本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简 积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础 二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起 本节难...
-
基本作图|基本作图详细阅读
教学目标 : 1、知识目标: (1)要掌握尺规作图的方法及一般步骤; (2)掌握五种,明确尺规作图的意义。 2、能力目标: (1)通过“作图题”练习,提高学生的几何语言表达能力; (2)通过画图,培养学生的作图能力及动手能力 3、情感目标: (1)体验数学语言的简洁严谨。 (2)体会数学作图语言和...
-
[二次根式的混合运算]二次根式的混合运算详细阅读
教学建议 知识结构 重难点分析 本节课的重点是二次根式的加、减、乘、除、乘方、开方的混合运算及分母有理化。它是以二次根式的概念和性质为基础,同时又紧密地联系着整式、分式的运算,也可以说它是运算问题在初中阶段一次总结性,提高性综合学习;二次根式的运算和有理化的方法与技巧,能够进一步开拓学生的解题思路...
-
多边形的内角和|多边形的内角和 教学设计示例3详细阅读
一、素质教育目标 (一)知识教学点 1.使学生掌握四边形的有关概念及四边形的内角和外角和定理. 2.了解四边形的不稳定性及它在实际生产,生活中的应用. (二)能力训练点 1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力. 2.通过推导四边形内角和定理,对学生渗透化归思想....
-
平行四边形的判定|平行四边形的判定 (第二课时)详细阅读
七、教学步骤 【引入新课】 由的定义和性质易得且,即“平行且相等”记为,反过来当时,四边形必为平行四边形,这就是今天要讲的判定定理4(写出课题). 【讲解新课】 (1)平行四边形的判定定理4:一组对边平行且相等的四边形是平行四边形. 引导学生结合图1,把已知,求证具体化. 分析:因为已知,所以只须...
-
[相似三角形的判定]相似三角形详细阅读
教学建议 知识结构 本节首先给出了的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理 重难点分析 的概念是本节的重点也是本节的难点 是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究比研究全等三角形更具有一般性 ...
-
【最简二次根式】最简二次根式 教学设计示例5详细阅读
教学目标 1.使学生进一步理解最简二次根式的概念; 2.较熟练地掌握把一个式子化为最简二次根式的方法. 教学重点和难点 重点:较熟练地把二次根式化为最简二次根式. 难点:把被开方数是多项式和分式的二次根式化为最简二次根式. 教学过程设计 一、复习 1.把下列各式化为最简二次根式: 请说出第(3),...