【苏科版八上物理】苏科版八上 3.1图形的旋转 教案
【jiaoan.jxxyjl.com--八年级数学教案】
【课标要求】⒈通过具体的实例认识旋转,探索它的性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质。
⒉能够按要求作出简单平面图形旋转后的图形。
⒊欣赏旋转在现实生活中的应用。
【教学目标】
⒈经历对生活中旋转现象观察、分析过程,引导学生用 数学的眼光看待生活中的有关问题。
⒉通过具体实例认识旋转,知道旋转的性质。
⒊经历对具有旋转特征的图形的观察、操作、画图等过程,掌握作图的技能。
【教学重点】
⒈旋转图形的性质
⒉旋转图形的画法
【教学难点】
旋转图形的画法
【教学思路】
从学生熟悉的生活中的旋转现象入手,帮助学生通过具体的旋转实例认识旋转,理解旋转的基本涵义,再通过观察,从而得出旋转图形的性质,最后通过画旋转图形,让学生掌握作图技能,进一步加深对旋转图形性质的认识。
【教学过程】
一、 创设情境
日常生活中,经常看到以下情境:游乐场里的摩天轮绕着一个固定的点旋转;钟摆绕着一个固定的点摆动。。。。。。(有条件的学校可以用实物投影仪投放生活中的旋转实例)
提出问题:⑴上述情境中的旋转现象有什么共同的特征?
⑵生活还有类似的例子吗?
【设计说明:从学生熟悉的生活中的旋转现象入手,帮助学生通过具体实例认识旋转,理解旋转的基本涵义。同时引导学生用数学的眼光看待生活中的有关问题,发展学生的数学观。】
二、 探索活动一
⒈ 将一块三角尺abc绕点c按逆时针方向旋转到dcb的位置
问题: 度量∠acd与∠bce的度数,线段ac与dc、bc与ec的长度。你发现了什么?
⒉ 将绕点按顺时针方向旋转到的位置。
问题:度量∠aoa`、∠bob`、∠coc`的度数,线段ao与a`o、bo与b`o、co与c`o的长度。你发现了什么?
【设计说明:教学中,要引导学生根据课本的要求,实际度量相关角的度数、相关线段的长度。通过对具体实例的观察和实际操作活动,帮助学生认识旋转,理解旋转的涵义,在此基础上,引入旋转的概念。】
三、新课讲授
⒈ 在学生看了与做了的基础上,得出概念。
旋转,旋转中心,旋转角
【注意】 对旋转概念的教学,要帮助学生理解如下两点:
⑴“将一个图形绕着一个定点旋转一定的角度”意味着图形上的每一点同时都按相同
的方式旋转相同的角度;
⑵与平移的情况相同,“图形的旋转不改变图形的形状、大小”,这是对旋转概念的一个补充。
⒉ 通过操作活动,让学生讨论:三角形在旋转过程中哪些发生了改变?哪些没有发生改变?通过学生的讨论得出旋转的性质:
旋转前、后的图形全等。 12
对应点到旋转中心的距离相等。
每一对对应点与旋转中心的连线所成的角彼此相等。
【设计说明:该讨论是对前面的操作活动:“度量相关角、相关线段的长度,你发现了么?”的一个提升。对于“讨论”,应引导学生从旋转的概念出发,理解在图3-1、图3-2的旋转过程中,旋转中心是什么?旋转角是什么?图中的没一对对应点分别是什么?】
⒊ 练一练
⑴ p94练习1
⑵ p94习题3.1 第1题
【设计说明:学习概念后,把概念直接运用到题目中,这是一个从一般到特殊的过程,也是数学学习的一大特点。本题是概念的直接运用】
四、探索活动二
旋转作图
⒈ 已知线段ab和点o,按下面的方法画出线段ab绕点o按逆时针放向旋转100 后的图形:
【设计说明:书p93给出了作图方法、步骤,要求学生阅读、理解给出的作图语句,画相应的图形。】
⒉ 在图3-4中,画出△abc按顺时针方向绕点o旋转120后对应的三角形。
【设计说明:该操作活动实际上是第一个作图活动的迁移,在讲解时要引导学生对问题进行分析,加深对问题的理解,但不要求学生写出分析的过程,同时,在学生作业时,只要求学生能根据要求画出图形,不要求学生写出作图方法、步骤。】
⒊ 练一练 :4练习2
【设计说明:学会画法后,适当的模仿是必要的,加深了理解,使之掌握画法技能。】
五、课堂小结
1、 从生活中的旋转现象入手,通过具体的实例认识旋转,探索旋转的性质;
2、 通过对具有旋转特征的图形的观察、操作、画图等过程,掌握作图技能。
【设计说明:通过课堂小结,使学生明确本节课的教学内容,强化了记忆,并且使本节内容系统化。】
六、作业布置 p94习题3.1 第2、3题
【设计说明:让学生课后理解、消化、吸收。】
3、 从生活中的旋转现象入手,通过具体的实例认识旋转,探索旋转的性质;
4、 通过对具有旋转特征的图形的观察、操作、画图等过程,掌握作图技能。
【设计说明:通过课堂小结,使学生明确本节课的教学内容,强化了记忆,并且使本节内容系统化。】
上一篇:苏科版八年级上 3.1-3.4综合练习
下一篇:苏科版八上 3.1图形的旋转 练习
12本文来源:https://jiaoan.jxxyjl.com/banianjishuxuejiaoan/1823.html
-
中心对称和中心对称图形的区别_中心对称和中心对称图形详细阅读
教学建议 知识归纳 1.中心对称 把一个图形绕着某一点旋转 ,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形关于点对称也称中心对称,这两个图形中的对应点,叫做关于中心的对称点. 中心对称的两个图形具有如下性质:(1)关于中心对称的两个图形全等;(2)关于中...
-
[等腰三角形的判定]等腰三角形的判定详细阅读
知识结构: 重点与难点分析: 本节内容的重点是定理 本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点 推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关...
-
相似三角形的性质_相似三角形的性质 (第2课时)详细阅读
(第2课时) 一、教学目标 1.掌握相似三角形的性质定理2、3. 2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题. 3.进一步培养学生类比的教学思想. 4.通过相似性质的学习,感受图形和语言的和谐美 二、教法引导 先学后教,达标导学 三、重点及难点 1.教学重点:是性质定理的应用...
-
【二次根式的乘法】二次根式的乘法详细阅读
教学建议 知识结构: 重点难点分析: 本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简 积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础 二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起 本节难...
-
基本作图|基本作图详细阅读
教学目标 : 1、知识目标: (1)要掌握尺规作图的方法及一般步骤; (2)掌握五种,明确尺规作图的意义。 2、能力目标: (1)通过“作图题”练习,提高学生的几何语言表达能力; (2)通过画图,培养学生的作图能力及动手能力 3、情感目标: (1)体验数学语言的简洁严谨。 (2)体会数学作图语言和...
-
[二次根式的混合运算]二次根式的混合运算详细阅读
教学建议 知识结构 重难点分析 本节课的重点是二次根式的加、减、乘、除、乘方、开方的混合运算及分母有理化。它是以二次根式的概念和性质为基础,同时又紧密地联系着整式、分式的运算,也可以说它是运算问题在初中阶段一次总结性,提高性综合学习;二次根式的运算和有理化的方法与技巧,能够进一步开拓学生的解题思路...
-
多边形的内角和|多边形的内角和 教学设计示例3详细阅读
一、素质教育目标 (一)知识教学点 1.使学生掌握四边形的有关概念及四边形的内角和外角和定理. 2.了解四边形的不稳定性及它在实际生产,生活中的应用. (二)能力训练点 1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力. 2.通过推导四边形内角和定理,对学生渗透化归思想....
-
平行四边形的判定|平行四边形的判定 (第二课时)详细阅读
七、教学步骤 【引入新课】 由的定义和性质易得且,即“平行且相等”记为,反过来当时,四边形必为平行四边形,这就是今天要讲的判定定理4(写出课题). 【讲解新课】 (1)平行四边形的判定定理4:一组对边平行且相等的四边形是平行四边形. 引导学生结合图1,把已知,求证具体化. 分析:因为已知,所以只须...
-
[相似三角形的判定]相似三角形详细阅读
教学建议 知识结构 本节首先给出了的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理 重难点分析 的概念是本节的重点也是本节的难点 是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究比研究全等三角形更具有一般性 ...
-
【最简二次根式】最简二次根式 教学设计示例5详细阅读
教学目标 1.使学生进一步理解最简二次根式的概念; 2.较熟练地掌握把一个式子化为最简二次根式的方法. 教学重点和难点 重点:较熟练地把二次根式化为最简二次根式. 难点:把被开方数是多项式和分式的二次根式化为最简二次根式. 教学过程设计 一、复习 1.把下列各式化为最简二次根式: 请说出第(3),...