[八年级上册数学等腰三角形的轴对称性]八年级上册《等腰三角形的轴对称性》2导学设计
【jiaoan.jxxyjl.com--八年级数学教案】
2.5 等腰三角形的轴对称性(2)
教学目标
1.掌握等腰三角形的判定定理.
2.知道等边三角形的性质以及等边三角形的判定定理.
3.经历折纸、画图、观察、推理等操作活动的合理性进行证明的过程,不断感受合情推理和演绎推理都是人们正确认识事物的重要途径.
4.会用“因为……所以……理由是……”或“根据……因为……所以……”等方式来进行说理,进一步发展有条理地思考和表达,提高演绎推理的能力.
教学重点
熟练地掌握等腰三角形的判定定理.
教学难点
正确熟练地运用定理解决问题及简洁地逻辑推理.
教学过程(教师活动)
学生活动
设计思路
前面我们学习了等腰三角形的轴对称性,说说你对等腰三角形的认识.
本节课我们将继续学习等腰三角形的轴对称性.
一、创设情境
如图所示△abc是等腰三角形,ab=ac,它的一部分被墨水涂没了,只留下一条底边bc和一个底角∠c.请同学们想一想,有没有办法把原来的等腰三角形abc重新画出来?大家试试看.
1.学生观察思考,提出猜想.
2.小组交流讨论.
一方面回忆等边对等角及其研究方法,为学生研究等角对等边提供研究的方法,另一方面通过创设情境,自然地引入课题.
二、探索发现一
请同学们分别拿出一张半透明纸,做一个实验,按以下方法进行操作:
(1)在半透明纸上画一条长为6cm的线段bc.
(2)以bc为始边,分别以点b和点c为顶点,在bc的同侧用量角器画两个相等的锐角,两角终边的交点为a.
(3)用刻度尺找出bc的中点d,连接ad,然后沿ad对折.
问题1:ab与ac有什么数量关系?
问题2:请用语言叙述你的发现.
1.根据实验要求进行操作.
2.画出图形、观察猜想.
3.小组合作交流、展示学习成果.
演示折叠过程为进一步的说理和推理提供思路.
通过动手操作、演示、观察、猜想、体验、感悟等学习活动,获得知识为今后学生进行探索活动积累数学活动经验.
三、分析证明
思考:我们利用了折叠、度量得到了上述结论,那么如何证明这些结论呢?
问题3:已知如图,在△abc中,
∠b=∠c.求证:ab=ac.
引导学分析问题,综合证明.
思考:你还有不同的证明方法吗?
问题4:“等边对等角”与“等角对等边”, 它们有什么区别和联系?
思考——讨论——展示.
1.学生独立完成证明过程的基础上进行小组交流.
2.班级展示:小组代表展示学习成果.
在实验的基础上获得问题解决的思路,在合情推理的基础上让学生经历演绎推理的过程,培养学生的逻辑思维能力.
通过“你有不同的证明方法吗”的问题,让学生学会质疑,学会从不同的角度思考问题,培养学生的发散性思维,激发探究问题的欲望和兴趣,通过对问题4的思考让学生加深对性质与判定的理解.
四、探索发现二
问题5:什么是等边三角形?等边三角形与等腰三角形有什么区别和联系?
问题6:等边三角形有什么性质?
问题7:一个三角形满足什么条件就是等边三角形了?为什么?
1.学生阅读教材,进行自主学习.
2.小组讨论交流.
3.展示学习成果:等边三角形的概念、等边三角形的性质、
等边三角形的判定.
培养学生阅读教材的学习习惯和自主学习能力.
引导学生经历合情推理和演绎推理的过程,感受合情推理和演绎推理都是人们认识事物的重要途径.12
五、学以致用
请同学完成课本p63-64练习第1、2、3题.
学生独立思考、小组讨论、展示交流、相互评价.
引导学生学会分析问题和解决问题,理解分析和综合之间的关系,培养学生分析问题和解决问题的能力.
巩固学习成果,加强知识的理解和方法的应用,培养分析问题、解决问题的能力.
六、归纳小结
1.这节课你有怎样的收获?还有哪些困惑呢?
2.布置作业:
课本p67习题2.5第7、8、10题.
1.学生以小组为单位归纳本节课所学习的知识、方法.
2.展示交流,相互补充,建立知识体系.
3.讨论困惑问题.
4.完成作业.
引导学生进行知识归纳整理,学会学习,培养学生发现问题、提出问题的学习能力.
12本文来源:https://jiaoan.jxxyjl.com/banianjishuxuejiaoan/1817.html
-
用计算器求平方根怎么求_数学教案-用计算器求平方根详细阅读
教学设计示例 一.教学目标 1 会用计算器求数的平方根; 2 通过用计算器求值及近似值计算,提高学生的运算能力和动手能力; 3 通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习知识的兴趣 二.教学重点与难点 教学重点:用计算器求一个正数的平方根的程序 教学难点 :准确用计算器求解一个...
-
[最简二次根式]最简二次根式详细阅读
教学建议 1.教材分析 本节是在前两节的基础上,从实际运算的客观需要出发,引出的概念,然后通过一组例题介绍了化简二次根式的方法.本小节内容比较少(求学生了解的概念并掌握化简二次根式的方法),但是本节知识在全章中却起着承上启下的重要枢纽作用,二次根式性质的应用、二次根式的化简以及二次根式的运算都需要来...
-
[看图编题数学教案]数学教案-作图题举例详细阅读
(1)知识结构 重点与难点分析 本节内容的重点是根据基本作图作出符合要求的几何图形。几何作图题同一般画图题不同,它规定只准用直尺和圆规为工具,而且每一步作图都必须有根有据,这样有助于培养学生的逻辑推理能力;另外,以后复杂的作图题常用基本作图中的三角形作基础,通过三角形来完成。 本节内容的难点是如...
-
数学教案|数学教案-菱形详细阅读
教学建议 知识结构 重难点分析 本节的重点是菱形的性质和判定定理。菱形是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。菱形的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要...
-
[小班数学教案三角形]数学教案-关于三角形的一些概念详细阅读
教学目标 : (1)使学生理解三角形、三角形的边、顶点、内角的概念; (2)正确理解三角形的角平分线、中线、高这三个概念的含义、联系及区别; (3)能正确地画出一个三角形的角平分线、中线和高; (4)能用符号规范地表示一个三角形及六个元素; (5)通过对三角形有关概念的教学,提高学生对概念的辨析能力...
-
数学教案|数学教案-矩形 教学示例二详细阅读
一、教学目标 1.掌握矩形的定义,知道矩形与平行四边形的关系. 2.掌握矩形的性质定理. 3.使学生能应用矩形定义、性质等知识,解决简单的证明题和计算题,进一步培养学生的分析能力. 4.通过性质的学习,体会矩形的应用美. 二、教法设计 观察、启发、总结、提高,类比探讨,讨论分析,启发式. 三、重点...
-
最简二次根式表_数学教案-最简二次根式 教学设计示例4详细阅读
教学目标 1.使学生理解最简二次根式的概念; 2.掌握把二次根式化为最简二次根式的方法. 教学重点和难点 重点:化二次根式为最简二次根式的方法. 难点:最简二次根式概念的理解. 教学过程 设计 一、导入 新课 计算: 我们再看下面的问题: 简,得到 从上面例子可以看出,如果把二次根式先进行化简...
-
二次根式的化简题|数学教案-二次根式的化简详细阅读
教学建议 知识结构 重难点分析 本节的重点是 的化简 本章自始至终围绕着二次根式的化简与计算进行,而 的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论 本节的难点是正确理解与应用公式 ...
-
【等腰三角形的性质】等腰三角形的性质详细阅读
知识结构 重点与难点分析: 本节内容的重点是及其推论。等腰三角形两底角相等(等边对等角)是证明同一三角形中两角相等的重要依据;而在推论中提到的等腰三角形底边上的高、中线及顶角平分线三线合一这条重要性质也是证明两线段相等,两个角相等及两直线互相垂直的重要依据。为证明线段相等,角相等或垂直平提供了方法...
-
一元二次方程初三数学教案|数学教案-一元二次方程详细阅读
教学目标 :(1)理解一元二次方程的概念 (2)掌握一元二次方程的一般形式,会判断一元二次方程的二次项系数、一次项系数和常数项。 (2)会用因式分解法解一元二次方程教学重点:一元二次方程的概念、一元二次方程的一般形式教学难点 :因式分解法解一元二次方程教学过程 :...