二次根式_二次根式 教学设计示例2
【jiaoan.jxxyjl.com--八年级数学教案】
一、教学过程
(一)复习提问
1.什么叫二次根式?
2.下列各式是二次根式,求式子中的字母所满足的条件:
(3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值为任意实数.
(二)二次根式的简单性质
上节课我们已经学习了二次根式的定义,并了解了第一个简单性质
我们知道,正数a有两个平方根,分别记作零的平方根是零。引导学生总结出,其中,就是一个非负数a的算术平方根。将符号“”看作开平方求算术平方根的运算,看作将一个数进行平方的运算,而开平方运算和平方运算是互为逆运算,因而有:
这里需要注意的是公式成立的条件是a≥0,提问学生,a可以代表一个代数式吗?
请分析:引导学生答如 时才成立。
时才成立,即a取任意实数时都成立。
我们知道
如果我们把 ,同学们想一想是否就可以把任何一个非负数写成一个数的平方形式了.
例1 计算:
分析:这个例题中的四个小题,主要是运用公式 。其中(2)、(3)、(4)题又运用了整式乘除中学习的积的幂的运算性质.结合第(2)小题中的 ,说明 ,这与带分数 。因此,以后遇到 ,应写成 ,而不宜写成 。
例2 把下列非负数写成一个数的平方的形式:
(1)5; (2)11; (3)1.6; (4)0.35.
例3 把下列各式写成平方差的形式,再分解因式:
(1)4x2-1; (2)a4-9;
(3)3a2-10; (4)a4-6a2+9.
解:(1)4x2-1
=(2x)2-12
=(2x+1)(2x-1).
(2)a4-9
=(a2)2-32
=(a2+3)(a2-3)
(3)3a2-10
(4)a4-6a2+32
=(a2)2-6a2+32
=(a2-3)2
(三)小结
1.继续巩固二次根式的定义,及二次根式中被开方数的取值范围问题.
2.关于公式 的应用。
(1)经常用于乘法的运算中.
(2)可以把任何一个非负数写成一个数的平方的形式,解决在实数范围内因式分解等方面的问题.
(四)练习和作业
练习:
1.填空
注意第(4)题需有2m≥0,m≥0,又需有-3m≥0,即m≤0,故m=0.
2.实数a、b在数轴上对应点的位置如下图所示:
分析:通过本题渗透数形结合的思想,进一步巩固二次根式的定义、性质,引导学生分析:由于a<0,b>0,且|a|>|b|.
3.计算
二、作业
教材P.172习题11.1;A组2、3;B组2.
补充作业 :
下列各式中的字母满足什么条件时,才能使该式成为二次根式?
分析:要使这些式成为二次根式,只要被开方式是非负数即可,启发学生分析如下:
(1)由-|a-2b|≥0,得a-2b≤0,
但根据绝对值的性质,有|a-2b|≥0,
∴ |a-2b|=0,即a-2b=0,得a=2b.
(2)由(-m2-1)(m-n)≥0,-(m2+1)(m-n)≥0
∴ (m2+1)(m-n)≤0,又m2+1>0,
∴ m-n≤0,即m≤n.
说明:本题求解较难些,但基本方法仍是由二次根式中被开方数(式)大于或等于零列出不等式.通过本题培养学生对于较复杂的题的分析问题和解决问题的能力,并且进一步巩固二次根式的概念.
三、板书设计
本文来源:https://jiaoan.jxxyjl.com/banianjishuxuejiaoan/164222.html
-
分式的加减法_分式的加减法详细阅读
教学目标: (1)理解通分的意义,理解最简公分母的意义; (2)掌握分式的通分法则,能熟练掌握通分运算。 教学重点:分式通分的理解和掌握。 教学难点:分式通分中最简公分母的确定。 教学工具:投影仪 教学方法:启发式、讨论式 教学过程: (一)引入 (1)如何计算: 由此让学生复习分数通分的意义、通分...
-
分式的基本性质|分式的基本性质详细阅读
第一课时 (一)教学过程 【复习提问】 1.分式的定义? 2.分数的基本性质?有什么用途? 【新课】 1.类比分数的基本性质,由学生小结出: 分式的分子与分母乘以(或除以)同一个不等于零的整式,分式的值不变,即: , (其中是不等于零的整式.) 2.加深对分式基本性质的理解: 例1 下列等式的右边...
-
三角形全等的判定3教学反思|三角形全等的判定3详细阅读
课题:三角形全等的判定(三) 教学目标: 1、知识目标: (1)掌握已知三边画三角形的方法; (2)掌握边边边公理,能用边边边公理证明两个三角形全等; (3)会添加较明显的辅助线 2、能力目标: (1)通过尺规作图使学生得到技能的训练; (2)通过公理的初步应用,初步培养学生的逻辑推理能力 3、...
-
【四边形的内角和是多少度】四边形详细阅读
教学建议 1.教材分析 (1)知识结构: (2)重点和难点分析: 重点:的有关概念及内角和定理 因为的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用 难点:的概念及不稳定性的理解和应用 在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就...
-
平行四边形及其性质_平行四边形及其性质详细阅读
教学建议 1.知识结构 2.重点和难点分析 重点:本节的重点是平行四边形的概念和性质 虽然平行四边形的概念在小学学过,但对于概念本质属性的理解并不深刻,为了加深学生对概念的理解,为以后学习特殊的平行四边形打下基础,所以教师不要忽视平行四边形的概念教学 平行四边形的性质是以后证明四边形问题的基础,也是...
-
用计算器求平方根怎么求_用计算器求平方根详细阅读
教学设计示例 一.教学目标 1 会用计算器求数的平方根; 2 通过用计算器求值及近似值计算,提高学生的运算能力和动手能力; 3 通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习知识的兴趣 二.教学重点与难点 教学重点:用计算器求一个正数的平方根的程序 教学难点 :准确用计算器求解一个...
-
[数学作图题]作图题举例详细阅读
(1)知识结构 重点与难点分析 本节内容的重点是根据基本作图作出符合要求的几何图形。几何作图题同一般画图题不同,它规定只准用直尺和圆规为工具,而且每一步作图都必须有根有据,这样有助于培养学生的逻辑推理能力;另外,以后复杂的作图题常用基本作图中的三角形作基础,通过三角形来完成。 本节内容的难点是如何...
-
[含字母系数的一元一次方程题目]含字母系数的一元一次方程详细阅读
教学目标 1.使学生正确认识含有字母系数的一元一次方程. 2.使学生掌握含有字母系数的一元一次方程的解法. 3.使学生会进行简单的公式变形. 4.培养学生由特殊到一般、由一般到特殊的逻辑思维能力.5.通过公式变形例题,培养学生解决实际问题的能力,激发学生的求知欲望和学习兴趣. 教学重点: (1)含有...
-
三角形全等的判定2教案|三角形全等的判定2详细阅读
课题:全等三角形的判定(二) 教学目标: 1、知识目标: (1)熟记角边角公理、角角边推论的内容; (2)能应用角边角公理及其推论证明两个三角形全等 2、能力目标: (1)通过“角边角”公理及其推论的运用,提高学生的逻辑思维能力; (2)通过观察几何图形,培养学生的识图能力 3、情感目标: (1...
-
三角形全等的判定1教学反思|三角形全等的判定1详细阅读
课题:全等三角形的判定(一) 教学目标 : 1、知识目标: (1)熟记边角边公理的内容; (2)能应用边角边公理证明两个三角形全等 2、能力目标: (1) 通过“边角边”公理的运用,提高学生的逻辑思维能力; (2) 通过观察几何图形,培养学生的识图能力 3、情感目标: (1) 通过几何证明的教学...