【余角公式和补角公式】3.4.2余角和补角

七年级数学教案 2017-02-05 网络整理 晴天

【jiaoan.jxxyjl.com--七年级数学教案】

一、课题:3.4.2 余角和补角

、学习目标:

㈠知识与技能:

1.在具体情境中了解余角和补角,懂得等角或同角的补角相等、等角或同角的余角相等;

2.并能运用这些性质解决一些简单的实际问题。

㈡过程与方法:

经历观察、推理、交流等活动,发展学生的图形观念,培养学生的推理能力和有条理的表达能力。

㈢情感态度与价值观:

1.体验数学知识来源于生活,又能运用于生活,解决生活中的一些实际问题;

2.使学生体会几何图形的动态美,通过性质的推导,使学生初步领略几何逻辑推理的严密美.

、教学重难点:

重点:互为余角、互为补角的概念及有关余角、补角的性质

难点:有关余角和有关补角性质的推导和运用。

、教学方法:演示法、观察法、小组合作与交流讨论法。

、课时与课型:

课时:第一课时;课型:新授课。

、教学准备:两副三角板、投影片若干张。

教学设计

㈠提出问题----从生活走向数学(投影)

在长方形的台球桌面上,选择适当的角度击打白球,可以使白球经过两次反弹后将黑球直接撞入袋中。此时此刻∠1=2,∠3=4,并且∠2+3=90°,∠4+5=90°,如果黑球与洞口的连线和台球桌面边缘的夹角∠5=40°,那么∠1应等于多少度才能保证黑球准确入袋?请说明理由。


㈡引入新课

要想正确解决这个问题,需要学习本节课的知识.

(板书课题)3.4.2余角和补角

㈢探究新知

1.互为余角、互为补角的定义

⑴教师用三角板演示两个角的和是90°及两个角的和是180°的情况;

⑵请你自己画出两个角的和是90°及两个角的和是180°的图形。

(教师问:)通过刚才的演示和画图,你能叙述一下具有什么关系的两个角叫互为余角和互为补角吗?

学生活动:同桌相互讨论,互相纠正和补充,然后找学生口述.

【教法与学法说明】通过学生亲自动手画图,观察老师的演示,对互为余角、互为补角概念的理解,应该说已经有所理解.教师不需完全包办代替,让学生自己总结归纳,可以训练其归纳总结及口头表达能力.

教师根据学生回答,给予肯定后给出答案:

[板书]互为余角:如果两个角的和等于90°(直角),那么这两个角叫互为余角.其中一个角叫做另一个角的余角.

互为补角:如果两个角的和等于180°平角),那么这两个角叫互为补角.其中一个角叫做另一个角的补角.

2.提出问题,理解定义.(投影显示)

1)以上定义中的“互为”是什么意思?

2)若 ,那么 互为补角吗?

3)互为余角、互为补角的两个角是否一定有公共顶点?

学生讨论以上三个问题.

【教法与学法说明】对定义的理解,提出的三个问题很关键,让学生讨论发表自己的见解,比教师单纯强调“注意”效果应该要好一些,同时也培养学生全面分析、考虑问题的能力.

3.课堂练习一:看谁答得又快又准(投影):

1.若 互补,则 ,若 互余,

2 角的余角为 ,补角为 的余角为 .补角为

3.如图: 是直线 上一点, 的平分线,

的补角是____________

的余角是____________

的补角是____________

课堂练习二:课本p139练习(学生板演后教师评讲)

4.有关互余、互补角的性质

师:通过以上练习,我们对互余、互补角的概念有了较深刻的理解,下面我们提出一个新问题,看你们能否解决.(出示投影)

: 如图: 互补, 互补,

那么 相等吗?为什么?

分析:解决几何问题往往要从已知入手,联想出结论:如由 互补你想到什么结论?( 互补呢?( ).因为要比较的是 的大小,以上两式可表示为: .已知中 ,则 一定等于

教师边引导学生叙述边板书出较规范的格式:

[板书]∵ 互补, 互补(已知)

(补角的定义)

(等式的性质1

又∵ (已知)

(等量减等量,差相等)

提出问题:通过以上题目,你是否发现了两个等角的补角间有怎样的关系?你能试着总结吗?

【教法与学法说明】由学生发现性质,并归纳总结,培养学生由具体题目抽象出几何命题的能力和语言表达能力.学会由具体到抽象考虑问题的方法.

学生活动:同桌讨论,并互相叙述总结规律.

教师对学生回答进行纠正、整理后板书,并给出符号语言,强调此性质的应用.

[板书]等角或同角的补角相等.

提出问题: 互余, 互余,若 ,那么 等于 吗?为什么?你由此问题又能得出什么结论?

学生活动:教师不给任何提示的情况下,在练习本上仿照例1的格式,写出“为什么”及得出的结论.

教师找同学回答后板书.

[板书]等角或同角的余角相等.

 

师:有关余角和补角的性质很有用,以后遇到有等角(或同角)的补角和余角就可以根据这个性质,知道它们都相等.

5.课堂练习三(投影):

1.见图1,若 互余, 互余,

____________根据是:________

2.见图2,若 互补, 互补,

_____________根据是:_________

图212

图1

3.如图3 是直线 上的一点, 平分 ,则

                               3

㈣解决问题----数学应用于生活(投影)

解:当∠1等于40度才能保证黑球准确入袋。

理由如下:

∵∠3=(已知)

又∵∠2+3=90°,∠4+5=90°(已知)

∴∠2=5(等角的余角相等)

又∵∠1=2(已知)

∴∠1=5=40°(等量代换)

㈤小结与拓展

1. 小结(以提问的形式列出下表)

互余的角

互补的角

数量关系

对应图形

性质

等角或同角的余角相等

等角或同角的补角相等

2.思考题(投影)

1.锐角的余角一定是锐角吗?

2.一个锐角和一个钝角一定互为补角吗?

3.一个角的补角比这个角的余角大多少度?

4.相等且互补的两个角各是多少度?

5.一个角的补角一定比这个角大吗?

㈥、布置作业课本p141~142页第5、6、10题

八、板书设计

3.4.2余角和补角

1.定义

如果两个角的和等于90°(直角),那么这两个角叫互为余角

如果两个角的和等于180°平角),那么这两个角叫互为补角.

2.性质

等角或同角的补角相等.

等角或同角的余角相等.

1 解:_______________

_________________________

_________________________

________________

(练习板演)______________

__________________________

__________________________

_________________________

(投影区)

九、教后小结:

12

本文来源:https://jiaoan.jxxyjl.com/qinianjishuxuejiaoan/48683.html

  • 平行线的性质|平行线的性质

    教学建议 1、教材分析 (1)知识结构 : (2)重点、难点分析 本节内容的重点是.教材上明确给出了“两直线平行,同位角相等”推出“两直线平行,内错角相等”的证明过程.而且直接运用了“∵”、“∴”的推理形式,为学生创设了一个学习推理的环境,对逻辑推理能力是一个渗透.因此,这一节课有着承上启下的作用...

    发布于:2026-01-18

    详细阅读
  • 【平行线的判定】平行线的判定

    教学建议 1、教材分析 (1)知识结构: 由平行线的画法,引出公理(同位角相等,两直线平行).由公理推出:内错角相等,两直线平行.同旁内角互补,两条直线平行,这两个定理. (2)重点、难点分析 : 本节的重点是:公理及两个判定定理.一般的定义与第一个判定定理是等价的.都可以做判定的方法.但平行线的定...

    发布于:2026-01-18

    详细阅读
  • 【一元一次方程的解法教案】一元一次方程和它的解法

    教学目的:掌握移项法则,并能利用移项法则准确 迅速地解一元一次方程教学重点:移项法则教学难点 :通过引例归纳移项法则教学过程 :一、复习提问 1、什么叫等式的性质? 2、什么叫方程? 二、新课:导语 :从这节课开始学习和研究,在...

    发布于:2026-01-18

    详细阅读
  • [简易方程]简易方程

    教学目标 1.会解,并能用解简单的应用题; 2.通过代数法解进一步培养学生的运算能力,发展学生的应用意识; 3.通过解决问题的实践,激发学生的学习兴趣,培养学生的钻研精神。教学建议 一、教学重点、难点 重点:的解法; 难点:根据实际问题中的数量关系正确地列出方程并求解。 二、重点、难点分析 解的基本...

    发布于:2026-01-18

    详细阅读
  • [二元一次方程组]二元一次方程组

    教学目的1、使学生二元一次方程、的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。2、使学生了解二元一次方程、的解的含义,会检验一对数是不是它们的解。3、通过和一元一次方程的比较,加强学生的类比的思想方法。通过“引例”的学习,使学生认识数学是根据实际的需要而产生发展的观点。教学...

    发布于:2026-01-18

    详细阅读
  • 简易方程|简易方程

    教学目标 1.会解,并能用解简单的应用题; 2.通过代数法解进一步培养学生的运算能力,发展学生的应用意识; 3.通过解决问题的实践,激发学生的学习兴趣,培养学生的钻研精神。教学建议 一、教学重点、难点 重点:的解法; 难点:根据实际问题中的数量关系正确地列出方程并求解。 二、重点、难点分析 解的基...

    发布于:2026-01-18

    详细阅读
  • 【一元一次方程的解法教案】一元一次方程和它的解法

    一、素质教育目标 (一)知识教学点 1.要求学生学会用移项解方程的方法. 2.使学生掌握移项变号的基本原则. (二)能力训练点 由移项变形方法的教学,培养学生由算术解法过渡到代数解法的解方程的基本能力. (三)德育渗透点 用代数方法解方程中,渗透了数学中的化未知为已知的重要数学思想. (四)美育渗透...

    发布于:2026-01-18

    详细阅读
  • 《走一步|《走一步,再走一步》教案设计

    课题: 邓稼先教学目的: 1、 掌握本文的生字新词,理解文中两个古诗文小段。 2、 灵活运用速读、默读、朗读等阅读方式阅读课文。 3、 学习邓稼先将个人生命奉献给祖国国防事业的崇高情怀。 教学重点: 用速读、默读、朗读等阅读方式阅读课文。 教学难点 : 1、 第一部分写百年屈辱史的用意; 2、 把邓...

    发布于:2026-01-18

    详细阅读
  • 同类项的定义|同类项

    教学设计示例 一、素质教育目标 (一)知识教学点 1.掌握:什么样的项是. 2.了解:了解可以合并. 3.应用:会合并,会利用合并的知识解决一些实际问题. (二)能力训练点 通过例题的讲解与训练,使学生熟练进行的合并. (三)德育渗透点 通过由数的加减推广到的合并,可以培养学生由特殊到一般的思维规律...

    发布于:2026-01-18

    详细阅读
  • 【一元一次方程的应用】一元一次方程的应用

    5 3 用方程解决问题(2)--打折销售 学 习目标:1、进一步经历运用方程解决实际问题的过程。2、提高学生找等量关系列方程的能力。3、培养学生的抽象、概括、分析和解决问题的能力。4、学会用数学的眼光去看待、分析现实生活中的情景。重点:1 如何从实际问题中寻找等量关系...

    发布于:2026-01-18

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计