【定理与证明二次备课】定理与证明(二)
【jiaoan.jxxyjl.com--七年级数学教案】
一、教学目标
1.了解“证明”的必要性和推理过程中要步步有据.
2.了解综合法证明的格式和步骤.
3.通过一些简单命题的证明,初步训练学生的逻辑推理能力.
4.通过证明步骤中由命题画出图形,写出已知、求证的过程,继续训练学生由几何语句正确画出几何图形的能力.
5.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法.
二、学法引导
1.教师教法:尝试指导,引导发现与讨论相结合.
2.学生学法:在教师的指导下,积极思维,主动发现.
三、重点·难点及解决办法
(-)重点
证明的步骤和格式是本节重点.
(二)难点
理解命题,分清其题设和结论,正确对照命题画出图形,写出已知、求证.
(三)解决办法
通过学生分组讨论,教师归纳得出证明的步骤和格式,再以练习加以巩固,解决重点、难点及疑点.
四、课时安排
l课时
五、教具学具准备
投影仪、三角板、自制胶片.
六、师生互动活动设计
1.通过引例创设情境,点题,引入新课.
2.通过情境教学,学生分组讨论,归纳总结及练习巩固等手段完成新授.
3.通过提问的形式完成小结.
七、教学步骤
(-)明确目标
使学生严密推理过程,掌握推理格式,提高推理能力。
(二)整体感知
以情境设计,引出课题,引导讨论,例题示范讲解新知,以练习巩固新知.
(三)教学过程
创设情境,引出课题
师:上节课我们学习了定理与证明,了解了这两个概念.并以证明“两直线平行,内错角相等”来说明什么是证明.我们再看这一命题的证明(投影出示).
例1 已知:如图1, , 是截线,求证: .
证明:∵ (已知),∴ (两直线平行,同位角相等).
∵ (对项角相等),∴ (等量代换).
这节课我们分析这一命题的证明过程,学习命题证明的步骤和格式.
[板书]2.9 定理与证明
探究新知
1.命题证明步骤
学生活动:由学生分组讨论以上命题的证明过程,按自己的理解说出证明一个命题都需要哪几步.
【教法说明】根据上一节“两直线平行,内错角相等”这一命题的证明过程让学生讨论、分析、归纳命题证明的一般步骤,一是可以加深对命题证明的理解,二是培养学生归纳总结能力。在总结步骤时,学生所说的层次不一定有逻辑性,或不太严密,教师要注意引导,使学生分清命题证明几个步骤的先后层次.
根据学生讨论,回答结果.教师归纳小结,师生共同得出证明命题的步骤(出示投影):
第一步,画出命题的图形.
先根据命题的题设即已知条件,画出图形,再把命题的结论即求证的内容在图上标出.还要根据证明的需要,在图上标出必要的字母或符号,以便于叙述或推理过程的表达.
第二步,结合图形写出已知、求证.
把命题的题设化为几何符号的语言写在已知中,命题的结论转化为几何符号的语言写在求证中.
第三步,经过分析,找出由已知推得求证的途径,写出推理的过程.
学生活动:结合“两直线平行,内错角相等”这一命题的证明,理解以上命题证明的一般步骤(给学生一定时间理解记忆).
【教法说明】在以上第二个步骤中,将文字语言转化为符号语言是教学中的难点,要注意在练习中加强辅导,第三步由学生独立完成有困难,要逐步培养训练,现阶段暂不要求学生独立完成.
反馈练习:(1)画出证明命题“两直线平行,同旁内角互补”时的图形,写出已知、求证.
(2)课本第112页A组第5题.
【教法说明】由学生依照例1“两直线平行,内错角相等”这一命题的证明画出图形,写出已知、求证,巩固命题证明的第一、二步.
2.命题的证明
例2 证明:邻补角的平分线互相垂直.
【教法说明】此例题完全放手让学生独立完成有一定困难,但教师也不能包办代替,最好通过让学生分步讨论,同桌互相磋商,分步完成的方法,使学生对命题证明的每一步都进一步理解,教师可以给学生指明思考步骤.
(1)分析命题的题设与结论,画出命题证明所需要的图形.
邻补角用图2表示:
图2
添画邻补角的平分线,见图3:
图3
(2)根据命题的题设与结论写出已知、求证.邻补角用几何符号语言提示: ,角平分线用几何符号语言表示: , ,求证邻补角平分钱互相垂直,用符号语言表示: .
(3)分析由已知谁出求证途径,写出证明过程.
有什么结论后可得 ( ),由已知可以推导 吗?学生讨论思考.
【教法说明】以上步骤的完成教师只提供思路,具体结论的得出与操作要由学生独立完成.找一个学生到黑板上板演,其他同学在练习本上写出完成整过程.
已知:如图, , , .
求证:
证明:∵ (已知),又∵ , (已知),∴ .
∴ (垂直定义).
证明完成后提醒学生注意以下几点:
①要证明的是一个简单叙述的命题,题设和结论不明显,可以先根据题意画出图形.如例2,结合图形分析命题的题设和结论.
②在写已知、求证的内容时,要将文字语言转化为符号语言来表示,转化时的写法也不是惟一的,要根据使用的方便来写,如: 与 互为邻补角,在已知中写为 ,角平分线有几种表示方法,如 是 的平分线, , ,根据此题写成 较好,方便于下面的推理计算.
③对命题的分析、画图,如何推理的思考过程,证明时不必写出来,不属于证明内容.
反馈练习:按证明命题的步骤证明:“两条直线被第三条直线所截,如果同位角相等,那么内错角相等.”
【教法说明】由学生独立完成,找学生板演,发现问题教师及时纠正.
3.判定一个命题是假命题的方法
师:以上我们的推理是说明一个命题是真命题的判定方法.那么如何判定一个命题是假命题呢?如“相等的角是对项角”,同学们都知道这是一个假命题,如何说明它是一个假命题呢?谁能试着说明一下?
【教法说明】教师先不告诉学生判定一个命题是假命题的方法,而是由很明显的“相等角是对顶角”这一假命题,让学生自己尝试着去说明,体验从反面去说明一个问题的方法,然后教师归纳小结.
根据学生说明,教师小结:
判定一个命题是假命题,只要举出一个反例即可,也就是说你所举命题符合命题的题设,但不满足结论.如“同位角相等”可如图, 与 是同位角但不相等就说明“同位角相等是假命题”.
反馈练习:课本第111页习题2.3A组第4题.
【教法说明】在做以上练习时一定让学生学会从反面思考问题的方法,再就是要澄清一些错误的概念.
反馈练习
投影出示以下练习:
1.指出下列命题的题设和结论
(1)两条平行线被第三条直线所截,同旁内角互补.
(2)两个角的和等于直角,这两个角互为余角.
(3)对项角相等.
(4)同角或等角的余角相等.
2.画图,写出已知,求证(不证明)
(1)同垂直于一条直线的两条直线平行.
(2)两条平行直线被第三条直线所截,同位角的平分线互相平行.
3.抄写下题并填空
已知:如图, .
求证: .
证明:∵ ( ),
∴ ( ).
∴ ( ).
【教法说明】以上练习让学生独立完成,第1题主要是训练学生分清命题的题设和结论;第2题是训练学生把命题转化为几何语言、几何图形的能力;第3题是让学生进一步体会命题证明的三个步骤.
总结、扩展
以提问的形式归纳出本节课的知识结构:
八、布置作业
(-)必做题
课本第110页习题2.3A组第3(2)、(3)、(4)题.
(二)思考题
课本第112页B组第l、2题.
作业 答案
A组(略)
B组1.已知两直线平行,同旁内角互补。
(两直线平行,同旁内角互补) (同角的补角相等).
2.已知:如图, , 、 分别平分 与 .求证: .
本文来源:https://jiaoan.jxxyjl.com/qinianjishuxuejiaoan/167604.html
-
【有理数的除法】有理数的除法详细阅读
教学目标 1.理解有理数除法的意义,熟练掌握有理数除法法则,会进行运算; 2.了解倒数概念,会求给定有理数的倒数; 3.通过将除法运算转化为乘法运算,培养学生的转化的思想;通过运算,培养学生的运算能力。教学建议 (一)重点、难点分析 本节教学的重点是熟练进行运算,教学难点是理解法则。 1.有理数除法...
-
平方差公式|平方差公式详细阅读
教学建议 一、知识结构 二、重点、难点分析 本节教学的重点是掌握公式的结构特征及正确运用公式.难点是公式推导的理解及字母的广泛含义.是进一步学习完全平方公式、进行相关代数运算与变形的重要知识基础. 1.是由多项式乘法直接计算得出的: 与一般式多项式的乘法一样,积的项数是多项式项数的积,即四项.合并...
-
【平行线的判定】平行线的判定详细阅读
一、教学目标 1.了解推理、证明的格式,理解判定定理的证法. 2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证. 3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力. 4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进...
-
【一元一次不等式组和它的解法视频】一元一次不等式组和它的解法详细阅读
教学建议 一、知识结构 本书首先结合实例引入一元一次不等式组的解集的概念,然后通过三个例题说明利用数轴解一元一次不等式组的方法,最后对一元一次不等式组的解法步骤进行了总结. 二、重点、难点分析 本节教学的重点是掌握一元一次不等式组的解法步骤并准确地求出解集.难点是正确应用不等式的基本性质对不等式进行...
-
空间里的平行关系的重要定理|空间里的平行关系详细阅读
教学建议 一、知识结构 在平行线知识的基础上,教科书以学生对长方体的直观认识为基础,通过观察长方体的某些棱与面、面与面的不相交,进而把它们想象成空间里的直线与平面、平面与平面的不相交,来建立空间里平行的概念.培养学生的空间观念. 二、重点、难点分析 能认识空间里直线与直线、直线与平面、平面与平面的平...
-
绝对值|绝对值详细阅读
教学目标 1.了解的概念,会求有理数的; 2.会利用比较两个负数的大小; 3.在概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力.教学建议 一、重点、难点分析 概念 既是本节的教学重点又是教学难点。关于的概念,需要明确的是无论是的几何定义,还是的代数定义,都揭示了的一个重要性质——非...
-
[有理数的减法]有理数的减法详细阅读
教学目标 1.理解掌握法则,会将运算转化为加法运算; 2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过运算,培养学生的运算能力. 3.通过揭示法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.教学建议 (一) 重点、难点分析 本节重点是运用法则熟练进行减法运算。解有理数减法的计算题需严...
-
[二元一次方程组]二元一次方程组详细阅读
教学建议 一、重点、难点分析 本节教学的重点是使学生了解二元一次方程、以及的解的含义,会检验一对数值是否是某个的解.难点是了解的解的含义.这里困难在于从1个数值变成了2个数值,而且这2个数值合在一起,才算作的解.用大括号来表示的解,可以使学生从形式上克服理解的困难;而讲清问题中已含有两个互相联系着的...
-
[有理数的混合运算]有理数的混合运算详细阅读
一、素质教育目标 (一)知识教学点 能按照有理数的运算顺序,正确熟练地进行有理数的加、减、乘、除、乘方的混合运算. (二)能力训练点 培养学生的观察能力和运算能力. (三)德育渗透点 培养学生在计算前认真审题,确定运算顺序,计算中按步骤审慎进行,最后要验算的好的习惯. (四)美育渗透点 通过本节课的...
-
用加减法解二元一次方程组|用加减法解二元一次方程组详细阅读
教学建议 1.教材分析 (1)知识结构 (2)重点、难点分析 重点:本小节的重点是使学生学会 这也是一种全新的知识,与在一元一次方程两边都加上、减去同一个数或同一个整式,或者都乘以、除以同一个非零数的情况是不一样的,但运用这项知识(这里也表现为一种方法),有时可以简捷地求出二元一次方程组的解,因此...