平行线的判定_平行线的判定

七年级数学教案 2026-01-19 网络整理 晴天

【jiaoan.jxxyjl.com--七年级数学教案】

一、教学目标

1.了解推理、证明的格式,理解判定定理的证法.

2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证.

3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力.

4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育

二、学法引导

1.教师教法:启发式引导发现法.

2.学生学法:积极参与、主动发现、发展思维.

三、重点·难点及解决办法

(一)重点

判定定理的推导和例题的解答.

(二)难点

使用符号语言进行推理.

(三)解决办法

1.通过教师正确引导,学生积极思维,发现定理,解决重点.

2.通过教师指导,学生自行完成推理过程,解决难点及疑点.

四、课时安排

1课时

五、教具学具准备

三角板、投影仪、自制胶片.

六、师生互动活动设计

1.通过设计练习,复习基础,创造情境,引入新课.

2.通过教师指导,学生探索新知,练习巩固,完成新授.

3.通过学生自己总结完成小结.

七、教学步骤

(一)明确目标

掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力.

(二)整体感知

以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知.

(三)教学过程

创设情境,复习引入

师:上节课我们学习了公理和一种判定方法,根据所学看下面的问题(出示投影). 1.如图1所示,直线 、 被直线 所截,如果 ,那么 ,为什么?

2.如图2,如果 ,那么 ,为什么?


图1 图2

3.如图3,直线 、 被直线 所截.(1)如果 ,那么 ,为什么?

(2)如果 ,那么 ,为什么?

4.如图4,一个弯形管道 的拐角 , ,这时管道 、 平行吗?


图3 图4

学生活动:学生口答第1、2题.

师:你能说出有什么条件,就可以判定两条直线平行呢?

学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行.

教师将第3题图形画在黑板上.

学生活动:学生口答理由,同角的补角相等.

师:要求学生写出符号推理过程,并板书

板书]∵ (已知),

(邻补角定义),

∴ (同角的补角相等).

(以备后面推导判定定理使用.)

【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行.第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点.

师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?

学生活动:同分内角.

师:它们有什么关系.

学生活动:互补.

师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题.

板书2.5 (2

师:请同学们看复习提问中的第3题,我们知道了 与 互补,那么 ,由此你还可以推出什么?根据什么?

学生活动:学生思考、回答,还可以推出 ,这个推理的全过程就是:

∵ (已知), (邻补角定义),

∴ (同角的补角相等).

∴ (同位角相等,两直线平行.)(教师再加上这一步即可).

由此你能得到什么结论?

学生活动:学生思索后回答出,两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行(学生语言不规范,注意纠正).

师:也就是说,我们又得到了一种方法,我们把它简单说成:

板书]同旁内角互补,两直线平行.

【教法说明】由于复习引入第3题为定理的推导做好了铺垫,所以学生并不难接受推理过程,放手由学生总结出判定方法,注意培养学生的归纳总结能力,另外在叙述判定方法时,训练学生用准确、规范的几何语言.

师:请同学们思考,刚才我们由同旁内角互补,推导两条直线平行,除了上面的推理过程,有没有其他途径?怎样写推理格式?

学生活动:学生思考,对照复习提问第3题的第2问很快地找到另一种途径,并在练习本上写出推理格式,找一个学生在原来黑板上的板书基础上完成.

【教法说明】通过使用不同种方法的推理,不仅开拓学生思维,同时也能够让学生尽可能地使用推理,从而使学生掌握推理格式的书写.

尝试反过,巩固练习

师:有了这种判定方法,我们就可以由同旁内角互补,直接判定两条直线平行了,让我们回到复习提问的第4题,管道 、 平行吗?为什么?

学生活动:平行,因为同旁内角互补,两直线平行.

【教法说明】不仅解决了前面遗留的问题,同时巩固了所学新知识.

师:下面我们一起应用这种判定方法再来研究一些题目(出示投影).

练习:

1.如图1,量得,,可以判定,它的根据是什么?


图1 图2

2.如图2,已知, 与 互补,可以判定哪两条直线平行? 与哪个角互补,可以判定直线 ?

【教法说明】这组练习进一步对判定方法加以巩固,第2题的第2问是根据给出的结果,找它成立的条件,是执果索因,学生应该没有什么困难,教师不必多讲,但要注意第2问中出现答 与 互补这类错误时,要结合图形让学生弄清是哪两条直线被哪两条直线所截.

例题讲解

师:我们学习了三种方法,在具体题目中如何选择应用它们来解决问题呢?下面我们看例题(出示投影).

例  两条直线垂直于同一条直线,这两条直线平行吗?为什么?

师:这个题目相当于文字题,解答时应根据题意画出图形(如图3),同时为了叙述方便,还要在图形上标出需要的字母或符号.


图3

学生活动:学生分析题意,按所说画出相应的图形.

师:我们要判定两条直线是否平行,应先想什么?可以讨论.

学生活动:讨论后答出,先想学过哪些判定平行线的方法.

师:再看已知条件与哪一种方法的条件相同或有关,思考时注意图形,按老师所标直角符号,回答问题.

学生活动:学生认真观察,积极思考后,踊跃回答.

教师给出规范的板书,答:垂直于同一条直线的两条直线平行.

理由:如图3, , .

∵ , (已知),

∴ (垂直的定义).

∴ (同位角相等,两直线平行).

师:这是两步推理,两个“∵”之间省略的一个“∴”,是什么内容?

学生活动:∵ (已证).

【教法说明】教师在讲解时,注意后发学生,引导学生形成正确的思维,从而学会分析问题,提高解题能力.

师:想一想,能不能利用内错角相等,或者同旁内角互补,来说明 呢?图形中的符号怎样改动?模仿例题说出理由

学生活动:学生思考,并在练习本上写出理由,请两名同学到黑板上去做,形成板书

图4

理由:如图4, , .

∵ , (已知),∴ (垂直的定义).

∴ (内错角相等,两直线平行).

理由:如图5, , .

∵ , (已知),

图5

∴ (垂直的定义).

∴ (同旁内角互补,两直线平行).

【教法说明】一题多解既巩固所学知识,同时培养了学生的发散思维,提高了学生的解 题能力.

变式训练,培养能力

练习(出示投影):

1.如图6,木工师傅用角尺画出工件边缘的两条垂线,这两条垂线平行吗?为什么?

2.如图7,如何判断这块玻璃板的上下两边平行?


图6 图7

学生活动:学生思考,给出第1题的答案为两条垂线平行.因为画出的两条线都垂直于工件边缘,也就是说,相交成直角,根据同位角相等(或内错角相等或同旁内角互补),两直线平行;对于第2题需要添出截线,然后有三种方法来判断.

【教法说明】这两个题目都是实际问题,培养学生应用所学知识解决实际问题的能力尤其是第2题,我们判定两条直线是否平行,必须根据被第三条直线截出的三种位置的关系角的大小来判定,通过此题,让学生进一步理解平行线的三种判定方法及应用.

(四)总结、扩展

师:我们学习了几种判定两条直线平行的方法.

学生活动:学生自己总结归纳完成下表.

判定

文字叙述

符号语言

图形

第一种

同位角相等,两直线平行

∵ (已知),

∴ ( ).

第二种

内错角相等,两直线平行

∵ (已知),

∴ ( ).

第三种

同旁内角互补,两直线平行

∵(已知,)∴ ( ).

八、布置作业 

课本第97~98页A组第 6(3)、7、8题.

作业 答案

6.(3)可判定 .根据同旁内角互补,两直线平行.

7.(1) 同位角相等,两直线平行.

(2) 内错角相等,两直线平行.

(3)  同旁内角互补,两直线平行.

8.(1) 同位角相等,两直线平行.

(2) 内错角相等,两直线平行.

(3)  内错角相等,两直线平行.

(4)  内错角相等,两直线平行.

(5)  同旁内角互补,两直线平行.

 


本文来源:https://jiaoan.jxxyjl.com/qinianjishuxuejiaoan/167595.html

  • 【有理数的除法】有理数的除法

    教学目标 1.理解有理数除法的意义,熟练掌握有理数除法法则,会进行运算; 2.了解倒数概念,会求给定有理数的倒数; 3.通过将除法运算转化为乘法运算,培养学生的转化的思想;通过运算,培养学生的运算能力。教学建议 (一)重点、难点分析 本节教学的重点是熟练进行运算,教学难点是理解法则。 1.有理数除法...

    发布于:2026-01-19

    详细阅读
  • 平方差公式|平方差公式

    教学建议 一、知识结构 二、重点、难点分析 本节教学的重点是掌握公式的结构特征及正确运用公式.难点是公式推导的理解及字母的广泛含义.是进一步学习完全平方公式、进行相关代数运算与变形的重要知识基础. 1.是由多项式乘法直接计算得出的: 与一般式多项式的乘法一样,积的项数是多项式项数的积,即四项.合并...

    发布于:2026-01-19

    详细阅读
  • 【平行线的判定】平行线的判定

    一、教学目标 1.了解推理、证明的格式,理解判定定理的证法. 2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证. 3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力. 4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进...

    发布于:2026-01-19

    详细阅读
  • 【一元一次不等式组和它的解法视频】一元一次不等式组和它的解法

    教学建议 一、知识结构 本书首先结合实例引入一元一次不等式组的解集的概念,然后通过三个例题说明利用数轴解一元一次不等式组的方法,最后对一元一次不等式组的解法步骤进行了总结. 二、重点、难点分析 本节教学的重点是掌握一元一次不等式组的解法步骤并准确地求出解集.难点是正确应用不等式的基本性质对不等式进行...

    发布于:2026-01-19

    详细阅读
  • 空间里的平行关系的重要定理|空间里的平行关系

    教学建议 一、知识结构 在平行线知识的基础上,教科书以学生对长方体的直观认识为基础,通过观察长方体的某些棱与面、面与面的不相交,进而把它们想象成空间里的直线与平面、平面与平面的不相交,来建立空间里平行的概念.培养学生的空间观念. 二、重点、难点分析 能认识空间里直线与直线、直线与平面、平面与平面的平...

    发布于:2026-01-19

    详细阅读
  • 绝对值|绝对值

    教学目标 1.了解的概念,会求有理数的; 2.会利用比较两个负数的大小; 3.在概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力.教学建议 一、重点、难点分析 概念 既是本节的教学重点又是教学难点。关于的概念,需要明确的是无论是的几何定义,还是的代数定义,都揭示了的一个重要性质——非...

    发布于:2026-01-19

    详细阅读
  • [有理数的减法]有理数的减法

    教学目标 1.理解掌握法则,会将运算转化为加法运算; 2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过运算,培养学生的运算能力. 3.通过揭示法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.教学建议 (一) 重点、难点分析 本节重点是运用法则熟练进行减法运算。解有理数减法的计算题需严...

    发布于:2026-01-19

    详细阅读
  • [二元一次方程组]二元一次方程组

    教学建议 一、重点、难点分析 本节教学的重点是使学生了解二元一次方程、以及的解的含义,会检验一对数值是否是某个的解.难点是了解的解的含义.这里困难在于从1个数值变成了2个数值,而且这2个数值合在一起,才算作的解.用大括号来表示的解,可以使学生从形式上克服理解的困难;而讲清问题中已含有两个互相联系着的...

    发布于:2026-01-19

    详细阅读
  • [有理数的混合运算]有理数的混合运算

    一、素质教育目标 (一)知识教学点 能按照有理数的运算顺序,正确熟练地进行有理数的加、减、乘、除、乘方的混合运算. (二)能力训练点 培养学生的观察能力和运算能力. (三)德育渗透点 培养学生在计算前认真审题,确定运算顺序,计算中按步骤审慎进行,最后要验算的好的习惯. (四)美育渗透点 通过本节课的...

    发布于:2026-01-19

    详细阅读
  • 用加减法解二元一次方程组|用加减法解二元一次方程组

    教学建议 1.教材分析 (1)知识结构 (2)重点、难点分析 重点:本小节的重点是使学生学会 这也是一种全新的知识,与在一元一次方程两边都加上、减去同一个数或同一个整式,或者都乘以、除以同一个非零数的情况是不一样的,但运用这项知识(这里也表现为一种方法),有时可以简捷地求出二元一次方程组的解,因此...

    发布于:2026-01-19

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计