圆心角弧弦弦心距之间的关系思维导图|圆心角、弧、弦、弦心距之间的关系(二)
【jiaoan.jxxyjl.com--九年级数学教案】
教学目标:1、使学生理解并掌握1°的弧的概念;2、使学生能够熟练地运用本小节的知识进行有关的计算.3、继续培养学生观察、比较、概括的能力;4、培养学生准确地简述自己观点的能力和计算能力.教学重点:圆心角、弧、弦、弦心距的之间相等关系定理.教学难点:理解1°的概念.教学过程:一、新课引入:同学们,上节课我们学习了圆心角、弧、弦、弦心距之间的关系定理.在同圆或等圆中,相等的圆心角所对的弧相等.如果把顶点在圆心的周角等分成360份,得到每一份圆心角是1°,那么1°的圆心角与它们对的弧的度数之间有怎样的关系呢?教师板书:“9.4圆心角、弧、弦、弦心距之间的关系(二)”,本节课我们专门来研究圆心角的度数和它所对的弧的度数之间的关系.根据学生的已有知识水平点题,教师有意识创设问题情境,一方面激发学生的情趣,另一方面把学生的注意力引到所要讲的教学内容上来.二、新课讲解:为了使学生真正掌握圆心角、弧、弦、弦心距之间的关系的定理,一开课教师提问以下问题:1.什么叫圆心角?什么叫弦心距?2.圆绕着圆心旋转多少度角,才能够与原来的图形重合.3.如果两个圆心角相等,那么它们对的弧相等的前提条件是什么?接下来教师在事先准备好的圆上,一边画图示范,一边讲解:“我把顶点在圆心的周角分成360等份”,提问:“得到每一份的圆心角是多少度?”引导学生观察思考,“顶点为圆心的周角360等份对应的整个圆也被分成360等分的弧,这每一份弧又是多少度呢?”学生回答,教师板书:(1)把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角.(2)因为在同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,这时,把每一份这样得到的弧叫做1°的弧.(三)重点、难点的学习与目标完成过程学生在教师的启发下得到了1°的弧的概念,为了进一步强化学生对1°的弧的概念的理解,巩固提问:1.度数是2°的圆心角所对的弧的度数是多少?为什么?2.3°的圆心角对着多少度的弧,3°的弧对着多少度的圆心角?3.n°的圆心角对着多少度的弧?n°的弧对着多少度的圆心角?通过学生回答,学生评价,再让学生观察和类比,可让学生自己说出圆心角的度数和它所对的弧的度数相等.如果学生说的很准确,教师不要重复,只把它完整地写在黑板上就可以了.对于“圆心角的度数和它们对的弧的度数相等”,一定让学生弄清楚这里说的相等指的是“角与弧的度数”相等,而不是“角与弧”相等,因为角与弧是两个不同的概念,不能比较和度量.接下来进行例题教学.径为2cm,求ab的长.分析:由于弦ab所对的劣弧为圆的 ,所以 的度数为120°,由于圆心角的度数等于它们对的弧的度数,所以∠aob的度数应等于 的度数,即∠aob=120°.作oc⊥ab于c可构造出直角三角aoc,然后用垂径定理和勾股定理,或用垂径定理和解直角三角形,就可求出ac的长,最后ab=2ac又求出弦长.分析后由学生回答教师板书:解:由题意可知 的度数为120°,∴∠aob=120°.作oc⊥ab,垂足为c,则∠aoc=60°,又∵ac=bc,在rt△aoc中,ac=oasin60°=2×sin60°对于这道题的解决方法,教师应该给学生充分思考时间,教师要在分析解决这个例题中,向学生渗透数形结合的重要的数学思想.所谓数形结合思想就是数与形互相转化,图形带有直观性,数则有精确性,两者有机地结合起来才能较好地完成这个例题.12例3 如图7-26,已知ab和cd是⊙o的两条直径,弦ce∥ab, =40°,求∠boc的度数.
分析:欲求∠boc的度数,只要设法求出∠oce的度数,由已知 =40°,可以想到ec的度数等于它们对的圆心角的度数,所以连结oe,构造圆心角∠coe,然后又由等腰三角形coe中,求出∠c的度数,最后根据ce∥ab,得到∠boc的度数.具体解题,略.对于以上两个例题,教师要善于调动学生积极主动地参与到教学活动中,引导用一题多解来考虑这个问题,分析思路教师尽可能不代替,让学生去分析并写出解题过程,此时教师只需强调解题要规范,书写要准确即可.由例3的计算题,改变成一个证明题.已知:如图7-27,ab和cd是两条直径,弦ce∥ab,求证: = .
教师给出这道题的目的,是培养学生发散思维能力,由学生自己分析证明思路,引导学生思考出不同的方法,最后教师概括总结各自方法.练习.教材p.90中1、2.教师指导学生在书上完成.三、课堂小结:本节课学到的知识点:1、1°的弧的定义.2、圆心角的度数和它们对的弧的度数相等.本节所学到的方法:1、证明圆心角、弧、弦、弦心距相等的问题,只要满足“在同圆或等圆中”的一组量相等,就可得到所要求的结论;2、求弧的度数往往想它所对的圆心角度数;3、解决弦、弧有关问题,常用的辅助线是作半径、弦心距等,构造直角三角形去解决.四、布置作业:教材p.100中5.教材p102中b组2题.12
本文来源:https://jiaoan.jxxyjl.com/jiunianjishuxuejiaoan/38339.html
-
正弦和余弦_正弦和余弦详细阅读
教学建议 1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等 2.重点、难点分析 (1) 正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三...
-
[圆的内接四边形有什么性质]圆的内接四边形详细阅读
1 知识结构 2 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3 教法建议 本节内容需要一个课时. (1)教...
-
【扇形所含弓形的面积】圆、扇形、弓形的面积详细阅读
(一) 教学目标 : 1、掌握扇形面积公式的推导过程,初步运用扇形面积公式进行一些有关计算; 2、通过扇形面积公式的推导,培养学生抽象、理解、概括、归纳能力和迁移能力; 3、在扇形面积公式的推导和例题教学过程 中,渗透“从特殊到一般,再由一般到特殊”的辩证思想. 教学重点:扇形面积公式的导出及应用....
-
方差公式|方差详细阅读
教学设计示例1第一课时 素质教育目标 (一)知识教学点 使学生了解、标准差的意义,会计算一组数据的与标准差 (二)能力训练点 1.培养学生的计算能力 2.培养学生观察问题、分析问题的能力,培养学生的发散思维能力 (三)德育渗透点 1.培养学生认真、耐心、细致的学习态度和学习习惯 2.渗透数学...
-
两圆的公切线条数|两圆的公切线详细阅读
第一课时 (一) 教学目标 : (1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法; (2)培养学生的归纳、总结能力; (3)通过两圆外公切线长的求法向学生渗透“转化”思想. 教学重点: 理解两圆相切长等有关概念,两圆外公切线的求法. 教学难点 : 两圆外公切线和两圆外公切线长学生理解的不透,...
-
二次函数y=ax2的图象和性质|二次函数y=ax2的图象详细阅读
教学设计示例1 课题:二次函数 的图象 教学目标: 1、会用描点法画出二次函数 的图象; 2、根据图象观察、分析出二次函数 的性质; 3、进一步理解二次函数和抛物线的有关知识 4、渗透由特殊到一般的辩证唯物主义观点; 5、渗透数形结合的数学思想方法,培养观察能力和分析问题的能力; 6、培养学生勇于探...
-
[圆的内接四边形有什么性质]圆的内接四边形详细阅读
1 知识结构 2 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3 教法建议 本节内容需要一个课时. (1)教...
-
[相切约束的作图原理]相切在作图中的应用详细阅读
1、教材分析 (1)知识结构 (2)重点、难点分析 重点:使学生理解画“连接”图形的理论依据.它是本节内容的核心,也是今后在实际制图应用中的基础. 难点:①对“连接”图形原理的理解.因为它是应用抽象知识来描述客观问题,学生常常因抽象思维能力较弱,而没有真正理解和掌握;②线段与弧、弧与弧连接时圆心位置...
-
【圆周角定理】圆周角详细阅读
第一课时 (一) 教学目标 : (1)理解的概念,掌握的两个特征、定理的内容及简单应用; (2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力; (3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法. 教学重点:的概念和定理 教学难点 :定理的证明中由“一般到特殊”的数学思想方法和完全归纳...
-
可化为一元二次方程的分式方程的解法_可化为一元二次方程的分式方程详细阅读
一、教学目标 1.使学生掌握的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根 2.通过本节课的教学,向学生渗透“转化”的数学思想方法; 3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点 二、重点·难点·疑点及解决办法 1.教学重点:的解法. 2.教学难点...