【证明2个三角形全等的条件】证明(2)
【jiaoan.jxxyjl.com--九年级数学教案】
§1.1、你能证明它们吗(二)
一、教学目标:
1、进一步了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。
2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的两条腰上的中线(高)、两底角的平分线相等,并由特殊结论归纳出一般结论。
3、能够用综合法证明等腰三角形的判定定理。
4、了解反证法的推理方法。
5、会运用“等角对等边”解决实际应用问题及相关证明问题。
二、教学重点:正确叙述结论及正确写出证明过程。熟悉作为证明基础的几条公理的内容,通过学习,掌握证明的基本步骤和书写格式。
教学难点:等腰三角形的定理应用及由特殊结论归纳出一般结论。
三、教学方法:探究式教学法 自主探究与合作探究
四、教学过程:
复习回顾:
你知道等腰三角形具有怎样的性质吗?、
探索——发现——猜想——证明
1、 引导探索:等腰三角形顶角的平分线、底边上的中线和高线具有上述的性质,那么,两底角的平分线、两腰上的中线和高线又具有怎样的性质呢?
(提出问题,激发学生探究的欲望。学生猜想)
2、 探究中发现:在等腰三角形中做出两底角的平分线,你会发现图中有那些相等的线段?你能用文字叙述你的结论吗?
(学生动手画图、探索发现相等的线段并思考为什么相等)
a
c
b
d
e
3、证明:
(1) 例1 证明:等腰三角形两底角的平分线相等。
(引导学生分清条件和结论、画图、写出已知、求证。)
已知:如图,在△abc中,ab=ac,bd,ce是
△ abc的角平分线。
求证:bd=ce(一生口述证明过程,然后写出证明过程。)
证明:(略)
此题还有其它的证法吗?
(2) 你能证明等腰三角形两条腰上的中线相等吗?高呢?
(引导学生分清条件和结论、画图、写出已知、求证并证明。其它证法合作交流完成。)
4、议一议1:
在上图的等腰△abc中,如果∠abd=1/3∠abc, ∠ace=1/3∠acb,那么bd=ce吗?如果∠abd=1/4∠abc, ∠ace=1/4∠acb呢?由此你能得到一个什么结论?
(根据图形引导学生分析归纳得出一般结论。学生分组思考、交流,在充分讨论的基础上得出一般结论写出证明过程。)
(3) 如果ad=1/2ac,ae=1/2ab, 那么bd=ce吗?如果ad=1/3ac,ae=1/3ab, 呢?由此你能得到一个什么结论?
议一议2:
把“等边对等角”反过来还成立吗?你能证明?
定理证明
已知:在δabc中∠b=∠c
a
b
c
求证:ab=ac (引导学生证明定理)
a
b
c
d
方法如下:
(1)
a
b
c
d
(2)
课堂小结1:
(1) 归纳判定等腰三角形判定有几种方法,
(2) a
b
c
d
ee
证明两条线段相等的方法有哪几种。(讨论、交流)
随堂练习:
已知:在δabc中,ab=ac,d在ab上,de∥ac
求证:db=de
(引导学生分析证明方法,学生动手证明,写出证明过程。)
想一想:
a
c
b
12
小明说,在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等,你认为这个结论成立吗?如果成立,你能证明它?
证明p8
反证法的概念 p8
课堂小结2:
通过这节课的学习你学到了什么知识?了解了什么证明方法?
(学生小结:掌握证明的基本步骤和书写格式。经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的两条腰上的中线(高)、两底角的平分线相等,并由特殊结论归纳出一般结论。等腰三角形的判定定理。了解反证法的推理方法。)
五、作业:
1、基础作业:p9页习题1.2 1、2、3。
2、拓展作业:《目标检测》
3、预习作业:p10-12页 做一做
六、板书设计:
§1.1、你能证明它们吗(二)
探索——发现——猜想——证明
七、课后记:
本文来源:https://jiaoan.jxxyjl.com/jiunianjishuxuejiaoan/38302.html
-
切线长定理_切线长定理详细阅读
1、教材分析 (1)知识结构 (2)重点、难点分析 重点:及其应用.因再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点. 难点:与有关的证明和计算问题.如120页练习题中第3题,它不仅应用,还用到解方程组的知识,是代数...
-
一元二次方程根的判别式应用|一元二次方程的根的判别式(一)详细阅读
1 知识结构: 2 重点、难点分析 (1)本节的重点是会用判别式判定根的情况 一元二次方程的根的判别式是比较重要的,用它可以判断一元二次方程根的情况,有助于我们顺利地解一元二次方程,也可以利用它进一步学习函数的有关内容,所以,它是本节课的重点 (2)本节的难点是一元二次方程根的三种情况的推导...
-
[垂直于弦的直径教案]垂直于弦的直径详细阅读
第一课时 垂直于弦的直径(一) 教学目标: (1)理解圆的轴对称性及垂径定理的推证过程;能初步应用垂径定理进行计算和证实; (2)进一步培养学生观察问题、分析问题和解决问题的能力; (3)通过圆的对称性,培养学生对数学的审美观,并激发学生对数学的热爱 教学重点、难点:...
-
圆和圆的位置关系|圆和圆的位置关系详细阅读
1、教材分析 (1)知识结构 (2)重点、难点分析 重点:两圆的位置关系和两圆相交、相切的性质.它们是本节的主要内容,是圆的重要概念性知识,也是今后研究圆与圆问题的基础知识. 难点:两圆位置关系的判定与相交两圆的连心线垂直平分两圆的公共弦的性质的运用.由于两圆位置关系有5种类型,特别是相离有外离和...
-
相切约束的作图原理|相切在作图中的应用详细阅读
1、教材分析 (1)知识结构 (2)重点、难点分析 重点:使学生理解画“连接”图形的理论依据.它是本节内容的核心,也是今后在实际制图应用中的基础. 难点:①对“连接”图形原理的理解.因为它是应用抽象知识来描述客观问题,学生常常因抽象思维能力较弱,而没有真正理解和掌握;②线段与弧、弧与弧连接时圆心位置...
-
二次函数的图像和性质|一次函数的图象和性质详细阅读
教学目标 : 1、使学生能进一步理解函数的定义,根据实际情况求函数的定义域,并能利用函数解决实际问题中的最值问题。 2、渗透函数的数学思想,培养学生的数学建模能力,以及解决实际问题的能力。 3、能初步建立应用数学的意识,体会到数学的抽象性和广泛应用性。 教学重点: 1、从实际问题中抽象概括出运动变化...
-
【一元二次方程的求根公式】一元二次方程详细阅读
教学目标 1. 了解整式方程和的概念;2. 知道的一般形式,会把化成一般形式。3. 通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。教学重点和难点: 重点:的概念和它的一般形式。 难点:对的一般形式的正确理解及其各项系数的确定。教学建议...
-
反比例函数及其图象的教学设计_反比例函数及其图象详细阅读
教学设计示例1 教学目标 : 1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式; 2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质; 3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想; 4、体会数学从实践中来又到实际中去的研究、应用过程; 5、培养学生的观察能力...
-
二次函数的图像和性质_一次函数的图象和性质详细阅读
教学目标: 1、使学生能进一步理解函数的定义,根据实际情况求函数的定义域,并能利用函数解决实际问题中的最值问题。 2、渗透函数的数学思想,培养学生的数学建模能力,以及解决实际问题的能力。 3、能初步建立应用数学的意识,体会到数学的抽象性和广泛应用性。 教学重点: 1、从实际问题中抽象概括出运动变化的...
-
一次函数|一次函数详细阅读
【目的要求】1、使学生初步理解与正比例函数的概念。2、使学生能够根据实际问题中的条件,确定与正比例函数的解析式。【教学重点、难点】以及正比例函数的解析式【教学过程 】一、复习提问: 1、什么是函数? 2、函数有哪几种表示方法?3、举出几个函数的例子。二、新课讲解:可以选用提问时学生举出的...