【扇形所含弓形的面积】圆、扇形、弓形的面积(一)
【jiaoan.jxxyjl.com--九年级数学教案】
教学目标:
1、复习圆面积公式,并在它的基础上推导扇形面积公式.
2、应用圆面积公式和扇形面积公式进行一些有关计算.
3、通过扇形面积公式的推导,培养学生抽象、理解、概括、归纳能力;
4、通过一些有关圆面积和扇形面积的计算培养学生正确、迅速的运算能力.
5、通过扇形面积公式的灵活运用,培养学生发散思维能力.
教学重点:
扇形面积公式的导出及应用.
教学难点:
对有关练习题的分析.
教学过程:
一、新课引入:
前面我们在推导弧长公式时是将360°的圆心角分成360等份,这些角的边将圆周分成360等分,每一等份,我们称其为1°的弧.在此基础上,我们推导了弧长公式.大家想想看,将360°的圆心角分成360等份后,这些角的边不仅将周长分成360等份,面积不也同时分成360等份了吗?圆被这些角的边分割后所成的图形就是我们今天所要学习的扇形.
二、新课讲解:
由于在推导弧长公式中,若将360°的圆心角360等分,就得到了360等份的弧.在这个过程中不难发现圆周被分割成360等份的同时,面积也被分割成360等份,于是就要研究这每一份的面积,从而推导了扇
由于扇形应用很广泛,它同其它规则图形一样是一些不规则图形的组成部分,尤其是跟圆弧有关的不规则图形中,在分解这些图形过程中扇形起着举足轻重的作用,而且它还是后面要学习的圆锥的基础,所以扇形面积公式的推导与计算是我们这堂课的重点.
如图7-161,圆心角的两边将圆分割成两部份,分割后所成的图形,我们称之为扇形.
哪位同学能给扇形下一个定义?(安排上等生回答:一条弧和经过这条弧的端点的两条半径组成的图形叫做扇形.)
将360°的圆心角分成360等份,这360条半径将圆分割成360个
哪位同学记得圆的面积公式?(安排中下生回答:s=πr2)
哪位同学知道,圆心角1°的扇形其面积应等于什么?(安排中下
如果一个扇形的圆心角为n°,则它的面积又应该是多少?(安排
公式中的“n”与弧长公式中的“n”意义完全相同,它表示1°的倍数,n的值与n°的值相同.
幻灯提供练习题:
1.已知扇形的圆心角为120°,半径为2cm,则这个扇形的面积,s扇=____.
r=____.
=____.
s扇=____.
长=____.
幻灯显示练习题:已知扇形的圆心角为150°,弧长为20πcm,则s扇=____.
幻灯显示练习题:已知一扇形的面积240πcm2,它的圆心角度数是150°,则这扇形的弧长是____;
哪位同学分析一下这题的解题思路?(安排中上生回答:通过公式
案:20πcm)
幻灯显示练习题:已知一扇形的面积240πcm2,它的弧长是20πcm,则这扇形的圆心角是____.
哪位同学分析一下这题的解题思路:(安排中下生回答:通过公式
幻灯显示练习题:一个扇形的半径等于一个圆的半径的2倍,且面积相等,求这个扇形的圆心角.
哪位同学分析一下这题的解题思路?(安排中上生回答:设扇形半
请同学们完成此题.(答案:n°=90°)
例1 如图7-162,已知正三角形的边长为a,求它的内切圆与外接圆组成的圆环的面积.
哪位同学知道圆环的面积怎么求?(安排中下生回答:外接圆的面积—内切圆的面积),如果设外接圆的半径为r,内切圆的半径为r3,
哪位同学发现r、r3与已知边长a有什么联系?
幻灯显示练习题:
1.已知正方形的边长为a,求它的内切圆与外接圆组成的圆环的面积;12
2.已知正五边形的边长为a,求它的内切圆与外接圆组成的圆环的面积.
(安排学生在练习本上完成)
通过前面3题的练习,你有什么发现?(安排中上学生回答:如果正
三、课堂小结:
四、布置作业:教材p.181.练习1、2、3、4;p.187中1012本文来源:https://jiaoan.jxxyjl.com/jiunianjishuxuejiaoan/38293.html
-
正弦和余弦_正弦和余弦详细阅读
教学建议 1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等 2.重点、难点分析 (1) 正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三...
-
[圆的内接四边形有什么性质]圆的内接四边形详细阅读
1 知识结构 2 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3 教法建议 本节内容需要一个课时. (1)教...
-
【扇形所含弓形的面积】圆、扇形、弓形的面积详细阅读
(一) 教学目标 : 1、掌握扇形面积公式的推导过程,初步运用扇形面积公式进行一些有关计算; 2、通过扇形面积公式的推导,培养学生抽象、理解、概括、归纳能力和迁移能力; 3、在扇形面积公式的推导和例题教学过程 中,渗透“从特殊到一般,再由一般到特殊”的辩证思想. 教学重点:扇形面积公式的导出及应用....
-
方差公式|方差详细阅读
教学设计示例1第一课时 素质教育目标 (一)知识教学点 使学生了解、标准差的意义,会计算一组数据的与标准差 (二)能力训练点 1.培养学生的计算能力 2.培养学生观察问题、分析问题的能力,培养学生的发散思维能力 (三)德育渗透点 1.培养学生认真、耐心、细致的学习态度和学习习惯 2.渗透数学...
-
两圆的公切线条数|两圆的公切线详细阅读
第一课时 (一) 教学目标 : (1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法; (2)培养学生的归纳、总结能力; (3)通过两圆外公切线长的求法向学生渗透“转化”思想. 教学重点: 理解两圆相切长等有关概念,两圆外公切线的求法. 教学难点 : 两圆外公切线和两圆外公切线长学生理解的不透,...
-
二次函数y=ax2的图象和性质|二次函数y=ax2的图象详细阅读
教学设计示例1 课题:二次函数 的图象 教学目标: 1、会用描点法画出二次函数 的图象; 2、根据图象观察、分析出二次函数 的性质; 3、进一步理解二次函数和抛物线的有关知识 4、渗透由特殊到一般的辩证唯物主义观点; 5、渗透数形结合的数学思想方法,培养观察能力和分析问题的能力; 6、培养学生勇于探...
-
[圆的内接四边形有什么性质]圆的内接四边形详细阅读
1 知识结构 2 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3 教法建议 本节内容需要一个课时. (1)教...
-
[相切约束的作图原理]相切在作图中的应用详细阅读
1、教材分析 (1)知识结构 (2)重点、难点分析 重点:使学生理解画“连接”图形的理论依据.它是本节内容的核心,也是今后在实际制图应用中的基础. 难点:①对“连接”图形原理的理解.因为它是应用抽象知识来描述客观问题,学生常常因抽象思维能力较弱,而没有真正理解和掌握;②线段与弧、弧与弧连接时圆心位置...
-
【圆周角定理】圆周角详细阅读
第一课时 (一) 教学目标 : (1)理解的概念,掌握的两个特征、定理的内容及简单应用; (2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力; (3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法. 教学重点:的概念和定理 教学难点 :定理的证明中由“一般到特殊”的数学思想方法和完全归纳...
-
可化为一元二次方程的分式方程的解法_可化为一元二次方程的分式方程详细阅读
一、教学目标 1.使学生掌握的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根 2.通过本节课的教学,向学生渗透“转化”的数学思想方法; 3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点 二、重点·难点·疑点及解决办法 1.教学重点:的解法. 2.教学难点...