垂直于弦的直径知二推三|垂直于弦的直径(三)
【jiaoan.jxxyjl.com--九年级数学教案】
教学目标: 1、使学生能够熟练掌握垂径定理及两个推论;2、使学生能够运用垂径定理及两个推论进行有关的证明和计算.3、通过例4的教学使学生了解垂径定理在实际问题中的应用,进一步提高学生用数学的意识;教学重点: 垂径定理及推论的应用.教学难点:实际问题转化为数学问题.教学过程:一、新课引入:这节课的主要内容是应用题例4,例4是一个实际问题,它反映了数学与生产实际的联系,它要求学生用数学的理论、思想、方法建立实际问题的数学模型,以解决实际问题.这对进一步培养学生分析问题和解决问题有很大的帮助.本节课就是引导学生把例4的实际问题转化成一个数学问题,然后综合运用垂径定理、勾股定理来加以解决.为了进一步理解运用垂径定理解决实际问题,教师有目的地安排两组复习题,启发学生进行回答.复习提问:1.垂径定理内容是什么?2.判断题:①垂直于弦的直线平分这条弦,并且平分弦所对的两条弧;( )②弦的垂直平分线一定平分这条弦所对的弧;( )③经过弦中点的直径一定垂直于弦;( )④圆的两条弦所夹的弧相等,则这两条弦一定平行;( )⑤平分弦所对的一条弧的直径一定垂直平分这条弦.( )学生回答的对错,由学生之间评价,从而得到正确答案.其目的就是为了强化所学过的垂径定理及推论1、推论2,为本节课做准备工作.二、新课讲解:例4 1300多年前,我国隋代建造的赵州石拱桥的桥拱是圆弧形,它的跨度(弧所对的弦的长)为37.4米,拱高(弧中点到弦的距离,也叫弓形的高)为7.2米,求桥拱的半径(精确到0.1米).同学们,请看图7-18上这座石桥,这座桥就是例4中的古代的赵州石拱桥,学生一边观察桥的结构,教师一边讲解:“赵州桥又名安济桥,位于河北省赵县城南洨河上,是我国现存的著名古代大石桥,是隋代开皇大业年间(590~608)李春创建.桥为单孔,全长50.82米,桥面宽约10米,跨径约为33米,拱圈矢高约7米,弧形平缓,拱圈由28条并列的石条组成,上设四个小拱,既减轻重量,又节省材料,又便于排水,且增美观,在世界桥梁史上,其设计与工艺之新为石拱桥的卓越典范,跨度之大在当时亦属创举,这反映了我国古代劳动人民的智慧与才能.现在这座桥为全国重点文物保护单位.”教师一席话一方面向学生进行爱祖国的教育;另一方面激发学生的学习动机,点燃学生的思维火花,激起学生思维的热情,使学生的思维处于最佳状态.教师为了让学生了解赵州石拱桥的背景,激发学生的求知欲望,当学生对这座桥产生好奇时,教师启发学生:“我们如何来求出这座桥的半径呢”?接着教师分析:“我们知道这是一座石拱桥,我们可以把桥拱抽成一个几何图形,就是一个圆弧形”.这时教师画出图7-19.
对于一个实际问题求半径的长,能否转化成一个数学问题来解决呢?这就需要首先分析已知什么条件和欲求的未知是什么?师生共同分析解题思路.教师板书:解:圆 表示桥拱,设 的圆心为o,半径为r米.经过圆心o作弦ab的垂线od,d为垂足,与 相交于足c,根据垂径定理,d是 的中点,c是ab的中点,cd就是拱高.由题设12ab=37.4,cd=7.2,od=oc-dc=r-7.2在rt△oad中,由勾股定理,得oa2=ad2+od2,即 r2=18.72+(r-7.2)2解这个方程,得r≈27.9(米).答:赵州石拱桥的半径约为27.9米.在例4的处理上,教师采取一边画图,一边分析,一边板书.目的让学生掌握关于求弦、半径、弦心距及弓形高等问题,属于典型的数形结合问题,对于解决这种典型的问题就是依据已知和未知设法构造直角三角形,通过这个直角三角形就能把垂径定理和勾股定理有机地结合起来,就能很快地把未知转化为已知.从而所求问题得以解决.巩固练习:p.81中1题.在直径为650mm的圆柱形油槽内装入一些油后,截面如图所示,若油面宽ab=60mm,求油的最大深度.对于这道题主要由学生分析,教师适当点拨.分析:要求油的最大深度,就是求有油弓形的高,弓形的高是半径与圆心o到弦的距离差,从而不难看出它与半径和弦的一半可以构造直角三角形,然后利用垂径定理和勾股定理来解决.总结解题思路:巩固练习:教材p.82中2题(略).三、课堂小结:本节课主要要求学生综合运用垂径定理和勾股定理解决圆中线段的长等问题.如图在⊙o中,设⊙o半径为r,弦ab=a,弦心距od=d,弓形的高de=h.且oe⊥ab于d.
已知:①r、d,求a、h.②r、h,求a、d.③r、a,求d、h.④d、h,求r、a.………对于在⊙o中在r,a,d,h中,只要已知两个量就可求出另外的两个量.所应用的知识点是勾股定理和垂径定理.本节课主要解题思路:四、布置作业:教材p.84中15、16题.教材p.85中4题(b组)12
本文来源:https://jiaoan.jxxyjl.com/jiunianjishuxuejiaoan/38295.html
-
切线长定理_切线长定理详细阅读
1、教材分析 (1)知识结构 (2)重点、难点分析 重点:及其应用.因再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点. 难点:与有关的证明和计算问题.如120页练习题中第3题,它不仅应用,还用到解方程组的知识,是代数...
-
一元二次方程根的判别式应用|一元二次方程的根的判别式(一)详细阅读
1 知识结构: 2 重点、难点分析 (1)本节的重点是会用判别式判定根的情况 一元二次方程的根的判别式是比较重要的,用它可以判断一元二次方程根的情况,有助于我们顺利地解一元二次方程,也可以利用它进一步学习函数的有关内容,所以,它是本节课的重点 (2)本节的难点是一元二次方程根的三种情况的推导...
-
[垂直于弦的直径教案]垂直于弦的直径详细阅读
第一课时 垂直于弦的直径(一) 教学目标: (1)理解圆的轴对称性及垂径定理的推证过程;能初步应用垂径定理进行计算和证实; (2)进一步培养学生观察问题、分析问题和解决问题的能力; (3)通过圆的对称性,培养学生对数学的审美观,并激发学生对数学的热爱 教学重点、难点:...
-
圆和圆的位置关系|圆和圆的位置关系详细阅读
1、教材分析 (1)知识结构 (2)重点、难点分析 重点:两圆的位置关系和两圆相交、相切的性质.它们是本节的主要内容,是圆的重要概念性知识,也是今后研究圆与圆问题的基础知识. 难点:两圆位置关系的判定与相交两圆的连心线垂直平分两圆的公共弦的性质的运用.由于两圆位置关系有5种类型,特别是相离有外离和...
-
相切约束的作图原理|相切在作图中的应用详细阅读
1、教材分析 (1)知识结构 (2)重点、难点分析 重点:使学生理解画“连接”图形的理论依据.它是本节内容的核心,也是今后在实际制图应用中的基础. 难点:①对“连接”图形原理的理解.因为它是应用抽象知识来描述客观问题,学生常常因抽象思维能力较弱,而没有真正理解和掌握;②线段与弧、弧与弧连接时圆心位置...
-
二次函数的图像和性质|一次函数的图象和性质详细阅读
教学目标 : 1、使学生能进一步理解函数的定义,根据实际情况求函数的定义域,并能利用函数解决实际问题中的最值问题。 2、渗透函数的数学思想,培养学生的数学建模能力,以及解决实际问题的能力。 3、能初步建立应用数学的意识,体会到数学的抽象性和广泛应用性。 教学重点: 1、从实际问题中抽象概括出运动变化...
-
【一元二次方程的求根公式】一元二次方程详细阅读
教学目标 1. 了解整式方程和的概念;2. 知道的一般形式,会把化成一般形式。3. 通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。教学重点和难点: 重点:的概念和它的一般形式。 难点:对的一般形式的正确理解及其各项系数的确定。教学建议...
-
反比例函数及其图象的教学设计_反比例函数及其图象详细阅读
教学设计示例1 教学目标 : 1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式; 2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质; 3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想; 4、体会数学从实践中来又到实际中去的研究、应用过程; 5、培养学生的观察能力...
-
二次函数的图像和性质_一次函数的图象和性质详细阅读
教学目标: 1、使学生能进一步理解函数的定义,根据实际情况求函数的定义域,并能利用函数解决实际问题中的最值问题。 2、渗透函数的数学思想,培养学生的数学建模能力,以及解决实际问题的能力。 3、能初步建立应用数学的意识,体会到数学的抽象性和广泛应用性。 教学重点: 1、从实际问题中抽象概括出运动变化的...
-
一次函数|一次函数详细阅读
【目的要求】1、使学生初步理解与正比例函数的概念。2、使学生能够根据实际问题中的条件,确定与正比例函数的解析式。【教学重点、难点】以及正比例函数的解析式【教学过程 】一、复习提问: 1、什么是函数? 2、函数有哪几种表示方法?3、举出几个函数的例子。二、新课讲解:可以选用提问时学生举出的...