九年级数学切线的判定_九年级《切线的判定》导学案

九年级数学教案 2016-02-24 网络整理 晴天

【jiaoan.jxxyjl.com--九年级数学教案】

学习目标:1、理解切线的判定定理并会运用定理解决简单的问题.
      2、培养学生观察、分析、归纳等解决数学问题的能力;
学习重、难点:定理的理解及实际运用
学习过程:
一、创设情境 引入新课
1、你知道下雨天当你快速转动雨伞时飞出的水珠,在砂轮上打磨工件时飞出的火星,是沿什么方向飞出的吗?
2、温故知新                  
(1)直线与圆的位置关系有     种,分别是:                                           
(2)判断直线与圆的位置关系的方法:
 
(3)你有哪些判断直线与圆相切的方法?
二、独立自学 发现新知
    自学教材97页,并完成下列问题中的“做一做”、“想一想”。
三、合作互学 探索新知
做一做   已知圆⊙o和⊙o上一点a,你能不能过点a作出圆的切线?如何作?有什么依据 ?你有什么新的发现?
想一想(1)这条直线必须同时满足    个条件:                     ,才是圆的切线。
(2)只满足一个条件可以吗?举例说明。
(3)用符号语言描述为:
 
考一考 (1) 判断下列说法是否正确
与圆有公共点的直线是圆的切线.   (   )
经过圆的半径外端的直线是圆的切线.  (   )
垂直于圆的半径的直线是圆的切线.  (   )
经过半径的端点且与半径垂直的直线是圆的切线.  (   )
到圆心距离等于半径的直线是圆的切线.  (   )
(2)回答创设情境中的问题。
理一理  判断直线与圆相切有哪些方法?
四、精讲导学 理解新知
例 如图,直线ab经过⊙o上的点c,并且oa=ob,ca=cb,求证:直线ab是⊙o的切线。
 
 
变式  如图,已知oa=ob,∠a=300,以点o为圆心、 oa为半径作⊙o。试判断直线ab是⊙o的位置关系,并说明理由。
 
 
想一想  例题与变式有那些共同点和不同点?(从已知条件和证明方法比较)
理一理  证明直线是圆的切线时常添加辅助线有:
 
 
五、 展示竞学 深化新知
如图,四边形abcd内接于⊙o,bd是⊙o的直径,ae⊥cd,垂足为e,da平分∠bde。
平分∠bde,
(1)判断ae与⊙o的位置关系,并证明你的结论;
(2)若∠dbc=30°,de=1cm,求bd的长。
六、小结评学  升华新知
一个定理
两种常见辅助线
三种方法
七、检测固学 运用新知
1、如图:ab为⊙o的直径,圆周角∠bac=50°,当∠acd=         时,cd为⊙o的切线.
2、在rt△abc中,∠b=90°,∠bac的平分线交bc于d,以d为圆心,db长为半径作⊙d。试说明:ac是⊙d的切线.
 
3、已知:如图,在 中, ,以 为直径的⊙o交 于点 ,过点 作 于点 .求证: 是⊙o的切线。

本文来源:https://jiaoan.jxxyjl.com/jiunianjishuxuejiaoan/38299.html

  • 切线长定理_切线长定理

    1、教材分析 (1)知识结构 (2)重点、难点分析 重点:及其应用.因再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点. 难点:与有关的证明和计算问题.如120页练习题中第3题,它不仅应用,还用到解方程组的知识,是代数...

    发布于:2025-12-29

    详细阅读
  • 一元二次方程根的判别式应用|一元二次方程的根的判别式(一)

    1 知识结构: 2 重点、难点分析 (1)本节的重点是会用判别式判定根的情况 一元二次方程的根的判别式是比较重要的,用它可以判断一元二次方程根的情况,有助于我们顺利地解一元二次方程,也可以利用它进一步学习函数的有关内容,所以,它是本节课的重点 (2)本节的难点是一元二次方程根的三种情况的推导...

    发布于:2025-12-29

    详细阅读
  • [垂直于弦的直径教案]垂直于弦的直径

    第一课时 垂直于弦的直径(一) 教学目标: (1)理解圆的轴对称性及垂径定理的推证过程;能初步应用垂径定理进行计算和证实; (2)进一步培养学生观察问题、分析问题和解决问题的能力; (3)通过圆的对称性,培养学生对数学的审美观,并激发学生对数学的热爱 教学重点、难点:...

    发布于:2025-12-29

    详细阅读
  • 圆和圆的位置关系|圆和圆的位置关系

    1、教材分析 (1)知识结构 (2)重点、难点分析 重点:两圆的位置关系和两圆相交、相切的性质.它们是本节的主要内容,是圆的重要概念性知识,也是今后研究圆与圆问题的基础知识. 难点:两圆位置关系的判定与相交两圆的连心线垂直平分两圆的公共弦的性质的运用.由于两圆位置关系有5种类型,特别是相离有外离和...

    发布于:2025-12-29

    详细阅读
  • 相切约束的作图原理|相切在作图中的应用

    1、教材分析 (1)知识结构 (2)重点、难点分析 重点:使学生理解画“连接”图形的理论依据.它是本节内容的核心,也是今后在实际制图应用中的基础. 难点:①对“连接”图形原理的理解.因为它是应用抽象知识来描述客观问题,学生常常因抽象思维能力较弱,而没有真正理解和掌握;②线段与弧、弧与弧连接时圆心位置...

    发布于:2025-12-29

    详细阅读
  • 二次函数的图像和性质|一次函数的图象和性质

    教学目标 : 1、使学生能进一步理解函数的定义,根据实际情况求函数的定义域,并能利用函数解决实际问题中的最值问题。 2、渗透函数的数学思想,培养学生的数学建模能力,以及解决实际问题的能力。 3、能初步建立应用数学的意识,体会到数学的抽象性和广泛应用性。 教学重点: 1、从实际问题中抽象概括出运动变化...

    发布于:2025-12-29

    详细阅读
  • 【一元二次方程的求根公式】一元二次方程

    教学目标 1. 了解整式方程和的概念;2. 知道的一般形式,会把化成一般形式。3. 通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。教学重点和难点: 重点:的概念和它的一般形式。 难点:对的一般形式的正确理解及其各项系数的确定。教学建议...

    发布于:2025-12-29

    详细阅读
  • 反比例函数及其图象的教学设计_反比例函数及其图象

    教学设计示例1 教学目标 : 1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式; 2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质; 3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想; 4、体会数学从实践中来又到实际中去的研究、应用过程; 5、培养学生的观察能力...

    发布于:2025-12-29

    详细阅读
  • 二次函数的图像和性质_一次函数的图象和性质

    教学目标: 1、使学生能进一步理解函数的定义,根据实际情况求函数的定义域,并能利用函数解决实际问题中的最值问题。 2、渗透函数的数学思想,培养学生的数学建模能力,以及解决实际问题的能力。 3、能初步建立应用数学的意识,体会到数学的抽象性和广泛应用性。 教学重点: 1、从实际问题中抽象概括出运动变化的...

    发布于:2025-12-29

    详细阅读
  • 一次函数|一次函数

    【目的要求】1、使学生初步理解与正比例函数的概念。2、使学生能够根据实际问题中的条件,确定与正比例函数的解析式。【教学重点、难点】以及正比例函数的解析式【教学过程 】一、复习提问: 1、什么是函数? 2、函数有哪几种表示方法?3、举出几个函数的例子。二、新课讲解:可以选用提问时学生举出的...

    发布于:2025-12-29

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计