[九年级数学下册知识点总结]九年级数学下册《不共线三点确定二次函数的表达式》教学教案(湘教版)
【jiaoan.jxxyjl.com--九年级数学教案】
【知识与技能】
1.掌握用待定系数法列方程组求二次函数解析式.
2.由已知条件的特点,灵活选择二次函数的三种形式,合适地设置函数解析式,可使计算过程简便.
【过程与方法】
通过例题讲解使学生初步掌握,用待定系数法求二次函数的解析式.
【情感态度】
通过本节教学,激发学生探究问题,解决问题的能力.
【教学重点】
用待定系数法求二次函数的解析式.
【教学难点】
灵活选择合适的表达式设法.
一、情境导入,初步认识
1.同学们想一想,已知一次函数图象上两个点的坐标,如何用待定系数法求它的解析式?
学生回答:
2.已知二次函数图象上有两个点的坐标,能求出其解析式吗?三个点的坐标呢?
二、思考探究,获取新知
探究1 已知三点求二次函数解析式讲解:教材p21例1,例2.
【教学说明】让学生通过例题讲解归纳出已知三点坐标求二次函数解析式的方法.
探究2 用顶点式求二次函数解析式.
例3 已知二次函数的顶点为a(1,-4)且过b(3,0),求二次函数解析式.
【分析】已知抛物线的顶点,设二次函数的解析式为y=a(x-h)2+k.
解:∵抛物线顶点为a(1,-4),∴设抛物线解析式为y=a(x-1)2-4,∵点b(3,0)在图象上,∴0=4a-4,∴a=1,∴y=(x-1)2-4,即y=x2-2x-3.
【教学说明】已知顶点坐标,设顶点式比较方便,另外已知函数的最(大或小)值即为顶点纵坐标,对称轴与顶点横坐标一致.
探究3 用交点式求二次函数解析式
例4(甘肃白银中考) 已知一抛物线与x轴交于点a(-2,0),b(1,0),且经过点c(2,8).求二次函数解析式.
【分析】由于抛物线与x轴的两个交点为a(-2,0),b(1,0),可设解析式为交点式:y=a(x-x1)(x-x2).
解:a(-2,0),b(1,0)在x轴上,设二次函数解析式为y=a(x+2)(x-1).又∵图象过点c(2,8),∴8=a(2+2)(2-1),∴a=2,∴y=2(x+2)(x-1)=2x2+2x-4.
【教学说明】因为已知点为抛物线与x轴的交点,解析式可设为交点式,再把第三点代入可得一元一次方程,较一般式所得的三元一次方程简单.
本文来源:https://jiaoan.jxxyjl.com/jiunianjishuxuejiaoan/38290.html
-
正弦和余弦_正弦和余弦详细阅读
教学建议 1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等 2.重点、难点分析 (1) 正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三...
-
[圆的内接四边形有什么性质]圆的内接四边形详细阅读
1 知识结构 2 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3 教法建议 本节内容需要一个课时. (1)教...
-
【扇形所含弓形的面积】圆、扇形、弓形的面积详细阅读
(一) 教学目标 : 1、掌握扇形面积公式的推导过程,初步运用扇形面积公式进行一些有关计算; 2、通过扇形面积公式的推导,培养学生抽象、理解、概括、归纳能力和迁移能力; 3、在扇形面积公式的推导和例题教学过程 中,渗透“从特殊到一般,再由一般到特殊”的辩证思想. 教学重点:扇形面积公式的导出及应用....
-
方差公式|方差详细阅读
教学设计示例1第一课时 素质教育目标 (一)知识教学点 使学生了解、标准差的意义,会计算一组数据的与标准差 (二)能力训练点 1.培养学生的计算能力 2.培养学生观察问题、分析问题的能力,培养学生的发散思维能力 (三)德育渗透点 1.培养学生认真、耐心、细致的学习态度和学习习惯 2.渗透数学...
-
两圆的公切线条数|两圆的公切线详细阅读
第一课时 (一) 教学目标 : (1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法; (2)培养学生的归纳、总结能力; (3)通过两圆外公切线长的求法向学生渗透“转化”思想. 教学重点: 理解两圆相切长等有关概念,两圆外公切线的求法. 教学难点 : 两圆外公切线和两圆外公切线长学生理解的不透,...
-
二次函数y=ax2的图象和性质|二次函数y=ax2的图象详细阅读
教学设计示例1 课题:二次函数 的图象 教学目标: 1、会用描点法画出二次函数 的图象; 2、根据图象观察、分析出二次函数 的性质; 3、进一步理解二次函数和抛物线的有关知识 4、渗透由特殊到一般的辩证唯物主义观点; 5、渗透数形结合的数学思想方法,培养观察能力和分析问题的能力; 6、培养学生勇于探...
-
[圆的内接四边形有什么性质]圆的内接四边形详细阅读
1 知识结构 2 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3 教法建议 本节内容需要一个课时. (1)教...
-
[相切约束的作图原理]相切在作图中的应用详细阅读
1、教材分析 (1)知识结构 (2)重点、难点分析 重点:使学生理解画“连接”图形的理论依据.它是本节内容的核心,也是今后在实际制图应用中的基础. 难点:①对“连接”图形原理的理解.因为它是应用抽象知识来描述客观问题,学生常常因抽象思维能力较弱,而没有真正理解和掌握;②线段与弧、弧与弧连接时圆心位置...
-
【圆周角定理】圆周角详细阅读
第一课时 (一) 教学目标 : (1)理解的概念,掌握的两个特征、定理的内容及简单应用; (2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力; (3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法. 教学重点:的概念和定理 教学难点 :定理的证明中由“一般到特殊”的数学思想方法和完全归纳...
-
可化为一元二次方程的分式方程的解法_可化为一元二次方程的分式方程详细阅读
一、教学目标 1.使学生掌握的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根 2.通过本节课的教学,向学生渗透“转化”的数学思想方法; 3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点 二、重点·难点·疑点及解决办法 1.教学重点:的解法. 2.教学难点...