[gbt22239-2019]22.2.3 公式法

九年级数学教案 2016-02-23 网络整理 晴天

【jiaoan.jxxyjl.com--九年级数学教案】

教学内容
    1.一元二次方程求根公式的推导过程;
    2.公式法的概念;
    3.利用公式法解一元二次方程.

    教学目标
    理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.
    复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导公式,并应用公式法解一元二次方程.

    重难点关键
    1.重点:求根公式的推导和公式法的应用.
    2.难点与关键:一元二次方程求根公式法的推导.

    教学过程
    一、复习引入

    (学生活动)用配方法解下列方程
    (1)6x2-7x+1=0   (2)4x2-3x=52
    (老师点评)  (1)移项,得:6x2-7x=-1
    二次项系数化为1,得:x2- x=-
    配方,得:x2- x+( )2=- +( )2
              (x- )2=
    x- =±   x1= + = =1 
    x2=- + = =
    (2)略

    总结用配方法解一元二次方程的步骤(学生总结,老师点评).
    (1)移项;
    (2)化二次项系数为1;
    (3)方程两边都加上一次项系数的一半的平方;
    (4)原方程变形为(x+m)2=n的形式;
    (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.

    二、探索新知
    如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.
    问题:已知ax2+bx+c=0(a≠0)且b2-4ac≥0,试推导它的两个根x1= ,x2=
    分析:因为前面具体数字已做得很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.12345
    解:移项,得:ax2+bx=-c
    二次项系数化为1,得x2+ x=-
    配方,得:x2+ x+( )2=- +( )2
    即(x+ )2=
    ∵b2-4ac≥0且4a2>0
    ∴ ≥0
    直接开平方,得:x+ =±
    即x=
    ∴x1= ,x2=
    由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:
    (1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b-4ac≥0时,将a、b、c代入式子x= 就得到方程的根.
    (2)这个式子叫做一元二次方程的求根公式.
    (3)利用求根公式解一元二次方程的方法叫公式法.
    (4)由求根公式可知,一元二次方程最多有两个实数根.

    例1.用公式法解下列方程.
    (1)2x2-4x-1=0          (2)5x+2=3x2
    (3)(x-2)(3x-5)=0   (4)4x2-3x+1=0
    分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.
    解:(1)a=2,b=-4,c=-1
    b2-4ac=(-4)2-4×2×(-1)=24>0
    x=
    ∴x1= ,x2=
    (2)将方程化为一般形式
     3x2-5x-2=0
     a=3,b=-5,c=-2
     b2-4ac=(-5)2-4×3×(-2)=49>0
    x=
    x1=2,x2=-
    (3)将方程化为一般形式
    3x2-11x+9=0
    a=3,b=-11,c=9
    b2-4ac=(-11)2-4×3×9=13>0
    ∴x=
    ∴x1= ,x2= 12345
    (3)a=4,b=-3,c=1
    b2-4ac=(-3)2-4×4×1=-7<0
    因为在实数范围内,负数不能开平方,所以方程无实数根.

    三、应用拓展

    例2.某数学兴趣小组对关于x的方程(m+1) +(m-2)x-1=0提出了下列问题.
    (1)若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程.
    (2)若使方程为一元二次方程m是否存在?若存在,请求出.
    你能解决这个问题吗?
    分析:能.(1)要使它为一元二次方程,必须满足m2+1=2,同时还要满足(m+1)≠0.
    (2)要使它为一元一次方程,必须满足:① 或② 或③
    解:(1)存在.根据题意,得:m2+1=2
                               m2=1  m=±1
      当m=1时,m+1=1+1=2≠0
      当m=-1时,m+1=-1+1=0(不合题意,舍去)
      ∴当m=1时,方程为2x2-1-x=0
      a=2,b=-1,c=-1
      b2-4ac=(-1)2-4×2×(-1)=1+8=9
      x=
      x1=,x2=-
      因此,该方程是一元二次方程时,m=1,两根x1=1,x2=- .

    (2)存在.根据题意,得:①m2+1=1,m2=0,m=0
    因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0
    所以m=0满足题意.
    ②当m2+1=0,m不存在.
    ③当m+1=0,即m=-1时,m-2=-3≠0
    所以m=-1也满足题意.
    当m=0时,一元一次方程是x-2x-1=0,
    解得:x=-1
    当m=-1时,一元一次方程是-3x-1=0
    解得x=-
    因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-1时,其一元一次方程的根为x=- .

    四、归纳小结
    本节课应掌握:
    (1)求根公式的概念及其推导过程;
    (2)公式法的概念;
    (3)应用公式法解一元二次方程;
    (4)初步了解一元二次方程根的情况.12345

    五、作业

    一、选择题
    1.用公式法解方程4x2-12x=3,得到(  ).
    a.x=      b.x=    c.x=      d.x=

    2.方程 x2+4 x+6 =0的根是(  ).
    a.x1= ,x2=      b.x1=6,x2=     c.x1=2 ,x2=      d.x1=x2=-

    3.(m2-n2)(m2-n2-2)-8=0,则m2-n2的值是(  ).
    a.4     b.-2     c.4或-2     d.-4或2

    二、填空题
    1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________.
    2.当x=______时,代数式x2-8x+12的值是-4.
    3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.

    三、综合提高题
    1.用公式法解关于x的方程:x2-2ax-b2+a2=0.
    2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=- ,x1·x2= ;(2)求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.
    3.某电厂规定:该厂家属区的每户居民一个月用电量不超过a千瓦时,那么这户居民这个月只交10元电费,如果超过a千瓦时,那么这个月除了交10元用电费外超过部分还要按每千瓦时 元收费.
    (1)若某户2月份用电90千瓦时,超过规定a千瓦时,则超过部分电费为多少元?(用a表示)
    (2)下表是这户居民3月、4月的用电情况和交费情况

月份

用电量(千瓦时)

交电费总金额(元)

 3

       80

       25

 4

       45

       10

    根据上表数据,求电厂规定的a值为多少?

    答案:
    一、1.d  2.d  3.c
    二、1.x= ,b2-4ac≥0   2.4  3.-312345
    三、
    1.x= =a±│b│

    2.
    (1)∵x1、x2是ax2+bx+c=0(a≠0)的两根,∴x1= ,x2=
         ∴x1+x2= =- ,x1·x2= · =
    (2)∵x1,x2是ax2+bx+c=0的两根,∴ax12+bx1+c=0,ax22+bx2+c=0
        原式=ax13+bx12+c1x1+ax23+bx22+cx2
        =x1(ax12+bx1+c)+x2(ax22+bx2+c)
        =0
    3.(1)超过部分电费=(90-a)· =- a2+ a (2)依题意,得:(80-a)· =15,a1=30(舍去),a2=50

12345

本文来源:https://jiaoan.jxxyjl.com/jiunianjishuxuejiaoan/38265.html

  • 正弦和余弦_正弦和余弦

    教学建议 1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等 2.重点、难点分析 (1) 正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三...

    发布于:2025-12-31

    详细阅读
  • [圆的内接四边形有什么性质]圆的内接四边形

    1 知识结构 2 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3 教法建议 本节内容需要一个课时. (1)教...

    发布于:2025-12-31

    详细阅读
  • 【扇形所含弓形的面积】圆、扇形、弓形的面积

    (一) 教学目标 : 1、掌握扇形面积公式的推导过程,初步运用扇形面积公式进行一些有关计算; 2、通过扇形面积公式的推导,培养学生抽象、理解、概括、归纳能力和迁移能力; 3、在扇形面积公式的推导和例题教学过程 中,渗透“从特殊到一般,再由一般到特殊”的辩证思想. 教学重点:扇形面积公式的导出及应用....

    发布于:2025-12-31

    详细阅读
  • 方差公式|方差

    教学设计示例1第一课时 素质教育目标 (一)知识教学点 使学生了解、标准差的意义,会计算一组数据的与标准差 (二)能力训练点 1.培养学生的计算能力 2.培养学生观察问题、分析问题的能力,培养学生的发散思维能力 (三)德育渗透点 1.培养学生认真、耐心、细致的学习态度和学习习惯 2.渗透数学...

    发布于:2025-12-31

    详细阅读
  • 两圆的公切线条数|两圆的公切线

    第一课时 (一) 教学目标 : (1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法; (2)培养学生的归纳、总结能力; (3)通过两圆外公切线长的求法向学生渗透“转化”思想. 教学重点: 理解两圆相切长等有关概念,两圆外公切线的求法. 教学难点 : 两圆外公切线和两圆外公切线长学生理解的不透,...

    发布于:2025-12-31

    详细阅读
  • 二次函数y=ax2的图象和性质|二次函数y=ax2的图象

    教学设计示例1 课题:二次函数 的图象 教学目标: 1、会用描点法画出二次函数 的图象; 2、根据图象观察、分析出二次函数 的性质; 3、进一步理解二次函数和抛物线的有关知识 4、渗透由特殊到一般的辩证唯物主义观点; 5、渗透数形结合的数学思想方法,培养观察能力和分析问题的能力; 6、培养学生勇于探...

    发布于:2025-12-31

    详细阅读
  • [圆的内接四边形有什么性质]圆的内接四边形

    1 知识结构 2 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3 教法建议 本节内容需要一个课时. (1)教...

    发布于:2025-12-31

    详细阅读
  • [相切约束的作图原理]相切在作图中的应用

    1、教材分析 (1)知识结构 (2)重点、难点分析 重点:使学生理解画“连接”图形的理论依据.它是本节内容的核心,也是今后在实际制图应用中的基础. 难点:①对“连接”图形原理的理解.因为它是应用抽象知识来描述客观问题,学生常常因抽象思维能力较弱,而没有真正理解和掌握;②线段与弧、弧与弧连接时圆心位置...

    发布于:2025-12-31

    详细阅读
  • 【圆周角定理】圆周角

    第一课时 (一) 教学目标 : (1)理解的概念,掌握的两个特征、定理的内容及简单应用; (2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力; (3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法. 教学重点:的概念和定理 教学难点 :定理的证明中由“一般到特殊”的数学思想方法和完全归纳...

    发布于:2025-12-31

    详细阅读
  • 可化为一元二次方程的分式方程的解法_可化为一元二次方程的分式方程

    一、教学目标 1.使学生掌握的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根 2.通过本节课的教学,向学生渗透“转化”的数学思想方法; 3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点 二、重点·难点·疑点及解决办法 1.教学重点:的解法. 2.教学难点...

    发布于:2025-12-31

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计