[gbt22239-2019]22.2.3 公式法

九年级数学教案 2016-02-23 网络整理 晴天

【jiaoan.jxxyjl.com--九年级数学教案】

教学内容
    1.一元二次方程求根公式的推导过程;
    2.公式法的概念;
    3.利用公式法解一元二次方程.

    教学目标
    理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.
    复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导公式,并应用公式法解一元二次方程.

    重难点关键
    1.重点:求根公式的推导和公式法的应用.
    2.难点与关键:一元二次方程求根公式法的推导.

    教学过程
    一、复习引入

    (学生活动)用配方法解下列方程
    (1)6x2-7x+1=0   (2)4x2-3x=52
    (老师点评)  (1)移项,得:6x2-7x=-1
    二次项系数化为1,得:x2- x=-
    配方,得:x2- x+( )2=- +( )2
              (x- )2=
    x- =±   x1= + = =1 
    x2=- + = =
    (2)略

    总结用配方法解一元二次方程的步骤(学生总结,老师点评).
    (1)移项;
    (2)化二次项系数为1;
    (3)方程两边都加上一次项系数的一半的平方;
    (4)原方程变形为(x+m)2=n的形式;
    (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.

    二、探索新知
    如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.
    问题:已知ax2+bx+c=0(a≠0)且b2-4ac≥0,试推导它的两个根x1= ,x2=
    分析:因为前面具体数字已做得很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.12345
    解:移项,得:ax2+bx=-c
    二次项系数化为1,得x2+ x=-
    配方,得:x2+ x+( )2=- +( )2
    即(x+ )2=
    ∵b2-4ac≥0且4a2>0
    ∴ ≥0
    直接开平方,得:x+ =±
    即x=
    ∴x1= ,x2=
    由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:
    (1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b-4ac≥0时,将a、b、c代入式子x= 就得到方程的根.
    (2)这个式子叫做一元二次方程的求根公式.
    (3)利用求根公式解一元二次方程的方法叫公式法.
    (4)由求根公式可知,一元二次方程最多有两个实数根.

    例1.用公式法解下列方程.
    (1)2x2-4x-1=0          (2)5x+2=3x2
    (3)(x-2)(3x-5)=0   (4)4x2-3x+1=0
    分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.
    解:(1)a=2,b=-4,c=-1
    b2-4ac=(-4)2-4×2×(-1)=24>0
    x=
    ∴x1= ,x2=
    (2)将方程化为一般形式
     3x2-5x-2=0
     a=3,b=-5,c=-2
     b2-4ac=(-5)2-4×3×(-2)=49>0
    x=
    x1=2,x2=-
    (3)将方程化为一般形式
    3x2-11x+9=0
    a=3,b=-11,c=9
    b2-4ac=(-11)2-4×3×9=13>0
    ∴x=
    ∴x1= ,x2= 12345
    (3)a=4,b=-3,c=1
    b2-4ac=(-3)2-4×4×1=-7<0
    因为在实数范围内,负数不能开平方,所以方程无实数根.

    三、应用拓展

    例2.某数学兴趣小组对关于x的方程(m+1) +(m-2)x-1=0提出了下列问题.
    (1)若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程.
    (2)若使方程为一元二次方程m是否存在?若存在,请求出.
    你能解决这个问题吗?
    分析:能.(1)要使它为一元二次方程,必须满足m2+1=2,同时还要满足(m+1)≠0.
    (2)要使它为一元一次方程,必须满足:① 或② 或③
    解:(1)存在.根据题意,得:m2+1=2
                               m2=1  m=±1
      当m=1时,m+1=1+1=2≠0
      当m=-1时,m+1=-1+1=0(不合题意,舍去)
      ∴当m=1时,方程为2x2-1-x=0
      a=2,b=-1,c=-1
      b2-4ac=(-1)2-4×2×(-1)=1+8=9
      x=
      x1=,x2=-
      因此,该方程是一元二次方程时,m=1,两根x1=1,x2=- .

    (2)存在.根据题意,得:①m2+1=1,m2=0,m=0
    因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0
    所以m=0满足题意.
    ②当m2+1=0,m不存在.
    ③当m+1=0,即m=-1时,m-2=-3≠0
    所以m=-1也满足题意.
    当m=0时,一元一次方程是x-2x-1=0,
    解得:x=-1
    当m=-1时,一元一次方程是-3x-1=0
    解得x=-
    因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-1时,其一元一次方程的根为x=- .

    四、归纳小结
    本节课应掌握:
    (1)求根公式的概念及其推导过程;
    (2)公式法的概念;
    (3)应用公式法解一元二次方程;
    (4)初步了解一元二次方程根的情况.12345

    五、作业

    一、选择题
    1.用公式法解方程4x2-12x=3,得到(  ).
    a.x=      b.x=    c.x=      d.x=

    2.方程 x2+4 x+6 =0的根是(  ).
    a.x1= ,x2=      b.x1=6,x2=     c.x1=2 ,x2=      d.x1=x2=-

    3.(m2-n2)(m2-n2-2)-8=0,则m2-n2的值是(  ).
    a.4     b.-2     c.4或-2     d.-4或2

    二、填空题
    1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________.
    2.当x=______时,代数式x2-8x+12的值是-4.
    3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.

    三、综合提高题
    1.用公式法解关于x的方程:x2-2ax-b2+a2=0.
    2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=- ,x1·x2= ;(2)求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.
    3.某电厂规定:该厂家属区的每户居民一个月用电量不超过a千瓦时,那么这户居民这个月只交10元电费,如果超过a千瓦时,那么这个月除了交10元用电费外超过部分还要按每千瓦时 元收费.
    (1)若某户2月份用电90千瓦时,超过规定a千瓦时,则超过部分电费为多少元?(用a表示)
    (2)下表是这户居民3月、4月的用电情况和交费情况

月份

用电量(千瓦时)

交电费总金额(元)

 3

       80

       25

 4

       45

       10

    根据上表数据,求电厂规定的a值为多少?

    答案:
    一、1.d  2.d  3.c
    二、1.x= ,b2-4ac≥0   2.4  3.-312345
    三、
    1.x= =a±│b│

    2.
    (1)∵x1、x2是ax2+bx+c=0(a≠0)的两根,∴x1= ,x2=
         ∴x1+x2= =- ,x1·x2= · =
    (2)∵x1,x2是ax2+bx+c=0的两根,∴ax12+bx1+c=0,ax22+bx2+c=0
        原式=ax13+bx12+c1x1+ax23+bx22+cx2
        =x1(ax12+bx1+c)+x2(ax22+bx2+c)
        =0
    3.(1)超过部分电费=(90-a)· =- a2+ a (2)依题意,得:(80-a)· =15,a1=30(舍去),a2=50

12345

本文来源:https://jiaoan.jxxyjl.com/jiunianjishuxuejiaoan/38265.html

  • 一个二元一次方程和一个二元二次方程|由一个二元二次方程和一个可以分解为两个二元一次方程的方程组成的方程组

    第一课时 一、教学目标 1.使学生掌握由一个二元二次方程和一个可以分解为两个二元一次方程组成的方程组的解法 2 通过例题的分析讲解,进一步提高学生的分析问题和解决问题的能力; 3 通过一个二元二次方程解法的分析,使学生进一步体会“消元”和“降次”的数学思想方法,继续向学生渗透“转化”的辨证唯...

    发布于:2025-12-30

    详细阅读
  • 二次函数y=ax2的图象和性质_二次函数y=ax2的图象

    教学设计示例1 课题:二次函数 的图象 教学目标: 1、会用描点法画出二次函数 的图象; 2、根据图象观察、分析出二次函数 的性质; 3、进一步理解二次函数和抛物线的有关知识 4、渗透由特殊到一般的辩证唯物主义观点; 5、渗透数形结合的数学思想方法,培养观察能力和分析问题的能力; 6、培养学生勇于探...

    发布于:2025-12-30

    详细阅读
  • 正切和余切的关系|正切和余切

    第一课时 一、教学目标 1.使学生了解正切、余切的概念,能够正确地用 、 表示直角三角形(其中一个锐角为 )中两边的比,了解 与 成倒数关系,熟记30°、45°、60°角的各个三角函数值,会计算含有这三个特殊锐角的三角函数值的式子,会由一个特殊锐角的三角函数值说出这个角的度数,了解一个锐角的正切(余...

    发布于:2025-12-30

    详细阅读
  • 【二次函数yax2bxc的图像和性质】二次函数y=ax2+bx+c 的图象

    教学目标 : 1、使学生进一步理解二次函数的基本性质; 2、渗透解析几何,数形结合,函数等数学思想 培养学生发现问题解决问题,及逻辑思维的能力 3、使学生参与教学过程 ,通过主体的积极思维,体验感悟数学 逐步建立数学的观念,培养学生独立地获取知识的能力 教学重点:初步理解数形结合的数学思想 教学...

    发布于:2025-12-30

    详细阅读
  • 【弦切角定理】弦切角

    1、教材分析 (1)知识结构 (2)重点、难点分析 重点:定理是本节的重点也是本章的重点内容之一,它在证明角相等、线段相等、线段成比例等问题时,有重要的作用;它与圆心角和圆周角以及直线形角的性质构成了完美的角的体系,属于工具知识之一. 难点:定理的证明.因为在证明过程中包含了由“一般到特殊”的数学...

    发布于:2025-12-30

    详细阅读
  • 【圆周角定理】圆周角

    第一课时 (一) 教学目标 : (1)理解的概念,掌握的两个特征、定理的内容及简单应用; (2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力; (3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法. 教学重点:的概念和定理 教学难点 :定理的证明中由“一般到特殊”的数学思想方法和完全归纳...

    发布于:2025-12-29

    详细阅读
  • 【圆的周长】圆的周长、弧长

    圆周长、弧长(一) 教学目标 : 1、初步掌握圆周长、弧长公式; 2、通过弧长公式的推导,培养学生探究新问题的能力; 3、调动学生的积极性,培养学生的钻研精神; 4、进一步培养学生从实际问题中抽象出数学模型的能力,综合运用所学知识分析问题和解决问题的能力. 教学重点:弧长公式. 教学难点 :正确理解...

    发布于:2025-12-29

    详细阅读
  • 多边形的内角和|多边形的内角和

    四川射洪 邱银 2005-05-06 教学任务分析教学目标 知识技能通过探究,归纳出 数学思考1、 通过测量、类比、推理等数学活动,探索的公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。2、 通过把多边形转化成三角形体会转化...

    发布于:2025-12-29

    详细阅读
  • 与圆有关的比例线段|和圆有关的比例线段

    教学建议 1、教材分析 (1)知识结构 (2)重点、难点分析 重点:相交弦定理及其推论,切割线定理和割线定理.这些定理和推论不但是本节的重点、本章的重点,而且还是中考试题的热点;这些定理和推论是重要的工具性知识,主要应用与圆有关的计算和证明. 难点:正确地写出定理中的等积式.因为图形中的线段较多,...

    发布于:2025-12-29

    详细阅读
  • 【平面直角坐标系】平面直角坐标系

    1、教材分析: ⑴知识结构: 日常生活及其它学科需要一种确定平面内点的位置的方法 在数学上,可以类比数轴,引出的概念 完成了坐标平面内的点与有序实数对的一一对应,也把数与形统一了起来 ⑵重点、难点分析: 本节的重点是能正确画出直角坐标系,并能在直角坐标系中,根据坐标找出点,由点求出坐标 直角坐标系...

    发布于:2025-12-29

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计