[圆的内接四边形有什么性质]圆的内接四边形

九年级数学教案 2016-02-23 网络整理 晴天

【jiaoan.jxxyjl.com--九年级数学教案】

教学目标:1、使学生掌握圆内接四边形的概念,掌握圆内接四边形的性质定理;2、使学生初步会运用圆的内接四边形的性质定理证明和计算一些问题.3、培养学生观察、分析、概括的能力;4、培养学生言必有据和准确简述自己观点的能力.教学重点: 圆内接四边形的性质定理.教学难点:理解“内对角”这一重点词语的意思.教学过程:一、新课引入:同学们,前面我们学习了圆内接三角形和三角形的外接圆的概念.本节课我们学习圆的内接四边形概念,那么什么叫做圆的内接四边形呢?教师板书课题“7.6圆内接四边形”.根据学生已有的实际知识水平及本节课所要讲的内容,首先点题,有意让学生从圆内接三角形的概念正向迁移到圆内接四边形的概念.这样做一方面让学生感觉新旧知识有着密切的联系,另一方面激发学生从已有知识出发探索新知识的主动性.二、新课讲解:为了使学生能够顺利地从圆内接三角形正向迁移得到圆内接四边形的概念,在本节课的圆内接四边形的教学中,首先由复习旧知识出发.复习提问:1.什么叫圆内接三角形?2.什么叫做三角形的外接圆?通过学生复习圆内接三角形的定义后,引导学生来模仿圆内接三形的定义,来给圆内接多边形下定义,再由一般圆内接多边形的定义归纳出圆内接四边形的概念.这样做的目的是调动学生成为课堂的主人,通过学生积极参与类比、联想、概括出来所要学的知识点.不是教师牵着学生走,而是学生积极主动地探求新的知识.这样学到的知识理解得更深刻.接下来引导学生观察圆内接四边形对角之间有什么关系?学生一边观察,教师一边点拨.从观察中让学生首先知道圆内接四边形的对角是圆周角,由圆周角性质定理可知一条弧所对的圆周角等于它们对的圆心角的一半.如何建立圆周角与圆心角的联系呢?由学生联想到了构造圆心角,从而得到对角互补这一结论.接着由学生自己探索得到一外角和内对角之间的关系.教师首先解释“内对角”的含义后,引导学生思考,议论、发现结论.由学生口述证明结论的成立.这样由学生通过观察、比较获得圆内接四边形的性质的过程,促使知识转化为技能,发展成能力,从而提高应用的素养. 由学生自己通过观察、探索得到圆内接四边形的性质.定理:圆的内接四边形的对角互补,并且任何一外角都等于它的内对角.为了巩固圆内接四边形的性质出示练习题.

在⊙o中,a、b、c、d、e都在同一个圆上.①指出图中圆内接四边形的外角有几个?它们是哪些?②∠dch的内对角是哪一个角,∠dbg呢?③与∠dea互补的角是哪个角?④∠ecb+(    )=180°.这组练习题的目的是巩固圆内接四边形的性质,加强对性质中的重点词语“内对角”的理解,同时也逐步训练学生在较复杂的几何图形中,能准确地辨认图形,较熟练地运用性质.接着幻灯出示例题:例  已知:如图7-47,⊙o1与⊙o2相交于a、b两点,经过a的直线与⊙o1交于点c,与⊙o2交于点d.过b的直线与⊙o1交于点e,与⊙o2交于点f.

求证:ce∥df.分析:欲证明cd∥df,只需证明∠e+∠f=180°,要证明∠e与∠f互补,连结ab,只有证明∠bad+∠f=180°,因为∠bad=∠e.师生分析证题的思路后,教师强调连结ab这是一种常见的引辅助线的方法.对于这道例题,连结ab以后,可以构造出两个圆内接四边形,然后利用圆内接四边形的关于角的性质解决.12此时,教师请一名中等学生证明例题,教师把证明过程写在黑板上:证明:连结ab.∵abce是⊙o1的内接四边形,∴∠bad=∠e.又∵adfb是⊙o2的内接四边形,∴∠bad+∠f=180°,∴∠e+∠f=180°.∴ce∥df.接着引导学生一起研究出例题的两种变式的情况.提问问题:①、说出(2)图的证明思路;②、说出(3)图的证明思路;③、总结出引辅助线ab后你都用了本节课的哪些知识点?出这些问答题的目的是进一步让学生知道一道几何题的图形有不同的画法,将来遇问题要多观察、比较、分析,善于挖掘题目中的一些隐含条件,总结出证题的一般规律.师生共同总结:图7-47(1)连结ab后,构造出两个圆内接四边形,最后应用同旁内角互补,证明二直线平行.图7-47(2)连结ab后,构造出一个圆内接四边形和圆弧所对的圆周角.最后运用内错角相等,证明二直线平行.图7-47(3),连结ab后,可以看成构造一个圆内接四边形,也可以看成构造两组圆弧所对的圆周角,最后可以运用同位角相等,证明二直线平行或利用同旁内角证明二直线平行.教师在课堂教学中,善于调动学生对例题、重点习题的剖析,多进行一点一题多变,一题多解的训练,培养学生发散思维,勇于创新,把学生从题海里解脱出来.巩固练习:教材p.98中1、2.三、课堂小结:1、本节课主要学习的内容:2.本节课学到的思想方法:①构造圆内接四边形;②一题多解,一题多变.四、布置作业教材p.101中15、16、17题.教材p.102中b组5题12

本文来源:https://jiaoan.jxxyjl.com/jiunianjishuxuejiaoan/38258.html

  • 一个二元一次方程和一个二元二次方程|由一个二元二次方程和一个可以分解为两个二元一次方程的方程组成的方程组

    第一课时 一、教学目标 1.使学生掌握由一个二元二次方程和一个可以分解为两个二元一次方程组成的方程组的解法 2 通过例题的分析讲解,进一步提高学生的分析问题和解决问题的能力; 3 通过一个二元二次方程解法的分析,使学生进一步体会“消元”和“降次”的数学思想方法,继续向学生渗透“转化”的辨证唯...

    发布于:2025-12-30

    详细阅读
  • 二次函数y=ax2的图象和性质_二次函数y=ax2的图象

    教学设计示例1 课题:二次函数 的图象 教学目标: 1、会用描点法画出二次函数 的图象; 2、根据图象观察、分析出二次函数 的性质; 3、进一步理解二次函数和抛物线的有关知识 4、渗透由特殊到一般的辩证唯物主义观点; 5、渗透数形结合的数学思想方法,培养观察能力和分析问题的能力; 6、培养学生勇于探...

    发布于:2025-12-30

    详细阅读
  • 正切和余切的关系|正切和余切

    第一课时 一、教学目标 1.使学生了解正切、余切的概念,能够正确地用 、 表示直角三角形(其中一个锐角为 )中两边的比,了解 与 成倒数关系,熟记30°、45°、60°角的各个三角函数值,会计算含有这三个特殊锐角的三角函数值的式子,会由一个特殊锐角的三角函数值说出这个角的度数,了解一个锐角的正切(余...

    发布于:2025-12-30

    详细阅读
  • 【二次函数yax2bxc的图像和性质】二次函数y=ax2+bx+c 的图象

    教学目标 : 1、使学生进一步理解二次函数的基本性质; 2、渗透解析几何,数形结合,函数等数学思想 培养学生发现问题解决问题,及逻辑思维的能力 3、使学生参与教学过程 ,通过主体的积极思维,体验感悟数学 逐步建立数学的观念,培养学生独立地获取知识的能力 教学重点:初步理解数形结合的数学思想 教学...

    发布于:2025-12-30

    详细阅读
  • 【弦切角定理】弦切角

    1、教材分析 (1)知识结构 (2)重点、难点分析 重点:定理是本节的重点也是本章的重点内容之一,它在证明角相等、线段相等、线段成比例等问题时,有重要的作用;它与圆心角和圆周角以及直线形角的性质构成了完美的角的体系,属于工具知识之一. 难点:定理的证明.因为在证明过程中包含了由“一般到特殊”的数学...

    发布于:2025-12-30

    详细阅读
  • 【圆周角定理】圆周角

    第一课时 (一) 教学目标 : (1)理解的概念,掌握的两个特征、定理的内容及简单应用; (2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力; (3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法. 教学重点:的概念和定理 教学难点 :定理的证明中由“一般到特殊”的数学思想方法和完全归纳...

    发布于:2025-12-29

    详细阅读
  • 【圆的周长】圆的周长、弧长

    圆周长、弧长(一) 教学目标 : 1、初步掌握圆周长、弧长公式; 2、通过弧长公式的推导,培养学生探究新问题的能力; 3、调动学生的积极性,培养学生的钻研精神; 4、进一步培养学生从实际问题中抽象出数学模型的能力,综合运用所学知识分析问题和解决问题的能力. 教学重点:弧长公式. 教学难点 :正确理解...

    发布于:2025-12-29

    详细阅读
  • 多边形的内角和|多边形的内角和

    四川射洪 邱银 2005-05-06 教学任务分析教学目标 知识技能通过探究,归纳出 数学思考1、 通过测量、类比、推理等数学活动,探索的公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。2、 通过把多边形转化成三角形体会转化...

    发布于:2025-12-29

    详细阅读
  • 与圆有关的比例线段|和圆有关的比例线段

    教学建议 1、教材分析 (1)知识结构 (2)重点、难点分析 重点:相交弦定理及其推论,切割线定理和割线定理.这些定理和推论不但是本节的重点、本章的重点,而且还是中考试题的热点;这些定理和推论是重要的工具性知识,主要应用与圆有关的计算和证明. 难点:正确地写出定理中的等积式.因为图形中的线段较多,...

    发布于:2025-12-29

    详细阅读
  • 【平面直角坐标系】平面直角坐标系

    1、教材分析: ⑴知识结构: 日常生活及其它学科需要一种确定平面内点的位置的方法 在数学上,可以类比数轴,引出的概念 完成了坐标平面内的点与有序实数对的一一对应,也把数与形统一了起来 ⑵重点、难点分析: 本节的重点是能正确画出直角坐标系,并能在直角坐标系中,根据坐标找出点,由点求出坐标 直角坐标系...

    发布于:2025-12-29

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计