222256黄大仙222256|22.2.5 因式分解法
【jiaoan.jxxyjl.com--九年级数学教案】
教学内容用因式分解法解一元二次方程. 教学目标
掌握用因式分解法解一元二次方程.
通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法──因式分解法解一元二次方程,并应用因式分解法解决一些具体问题. 重难点关键
1.重点:用因式分解法解一元二次方程.
2.难点与关键:让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题简便. 教学过程
一、复习引入
(学生活动)解下列方程.
(1)2x2+x=0(用配方法) (2)3x2+6x=0(用公式法)
老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为 , 的一半应为 ,因此,应加上( )2,同时减去( )2.(2)直接用公式求解. 二、探索新知
(学生活动)请同学们口答下面各题.
(1)上面两个方程中有没有常数项?
(2)等式左边的各项有没有共同因式?
上面两个方程中都没有常数项;左边都可以因式分解:2x2+x=x(2x+1),3x2+6x=3x(x+2)
因此,上面两个方程都可以写成: (1)x(2x+1)=0 (2)3x(x+2)=0
因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=- . (2)3x=0或x+2=0,所以x1=0,x2=-2.
因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法. 例1.解方程
(1)4x2=11x (2)(x-2)2=2x-4
分析:(1)移项提取公因式x;(2)等号右侧移项到左侧得-2x+4提取-2因式,即-2(x-2),再提取公因式x-2,便可达到分解因式;一边为两个一次式的乘积,另一边为0的形式
解:(1)移项,得:4x2-11x=0
因式分解,得:x(4x-11)=0
于是,得:x=0或4x-11=0
x1=0,x2= (2)移项,得(x-2)2-2x+4=0
(x-2)2-2(x-2)=0
因式分解,得:(x-2)(x-2-2)=0
整理,得:(x-2)(x-4)=0
于是,得x-2=0或x-4=0
x1=2,x2=41234 例2.已知9a2-4b2=0,求代数式 的值.
分析:要求 的值,首先要对它进行化简,然后从已知条件入手,求出a与b的关系后代入,但也可以直接代入,因计算量比较大,比较容易发生错误.
解:原式=
∵9a2-4b2=0
∴(3a+2b)(3a-2b)=0
3a+2b=0或3a-2b=0,
a=- b或a= b
当a=- b时,原式=- =3
当a= b时,原式=-3. 三、应用拓展 例3.我们知道x2-(a+b)x+ab=(x-a)(x-b),那么x2-(a+b)x+ab=0就可转化为(x-a)(x-b)=0,请你用上面的方法解下列方程.
(1)x2-3x-4=0 (2)x2-7x+6=0 (3)x2+4x-5=0
分析:二次三项式x2-(a+b)x+ab的最大特点是x2项是由x·x而成,常数项ab是由-a·(-b)而成的,而一次项是由-a·x+(-b·x)交*相乘而成的.根据上面的分析,我们可以对上面的三题分解因式.
解(1)∵x2-3x-4=(x-4)(x+1)
∴(x-4)(x+1)=0
∴x-4=0或x+1=0
∴x1=4,x2=-1 (2)∵x2-7x+6=(x-6)(x-1)
∴(x-6)(x-1)=0
∴x-6=0或x-1=0
∴x1=6,x2=1 (3)∵x2+4x-5=(x+5)(x-1)
∴(x+5)(x-1)=0
∴x+5=0或x-1=0
∴x1=-5,x2=1
上面这种方法,我们把它称为十字相乘法. 四、归纳小结
本节课要掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.
(2)三种方法(配方法、公式法、因式分解法)的联系与区别:
联系①降次,即它的解题的基本思想是:将二次方程化为一次方程,即降次.
②公式法是由配方法推导而得到.
③配方法、公式法适用于所有一元二次方程,因式分解法适用于某些一元二次方程.
区别:①配方法要先配方,再开方求根. ②公式法直接利用公式求根. ③因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0. 五、作业 一、选择题
1.下面一元二次方程解法中,正确的是( ).1234
a.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7
b.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1= ,x2=
c.(x+2)2+4x=0,∴x1=2,x2=-2
d.x2=x 两边同除以x,得x=1 2.下列命题①方程kx2-x-2=0是一元二次方程;②x=1与方程x2=1是同解方程;③方程x2=x与方程x=1是同解方程;④由(x+1)(x-1)=3可得x+1=3或x-1=3,其中正确的命题有( ).
a.0个 b.1个 c.2个 d.3个 3.如果不为零的n是关于x的方程x2-mx+n=0的根,那么m-n的值为( ).
a.- b.-1 c. d.1 二、填空题
1.x2-5x因式分解结果为_______;2x(x-3)-5(x-3)因式分解的结果是______.
2.方程(2x-1)2=2x-1的根是________.
3.二次三项式x2+20x+96分解因式的结果为________;如果令x2+20x+96=0,那么它的两个根是_________. 三、综合提高题
1.用因式分解法解下列方程.
(1)3y2-6y=0 (2)25y2-16=0
(3)x2-12x-28=0 (4)x2-12x+35=0
2.已知(x+y)(x+y-1)=0,求x+y的值.
3.今年初,湖北武穴市发生禽流感,某养鸡专业户在禽流感后,打算改建养鸡场,建一个面积为150m2的长方形养鸡场.为了节约材料,鸡场的一边*着原有的一条墙,墙长am,另三边用竹篱围成,如果篱笆的长为35m,问鸡场长与宽各为多少?(其中a≥20m) 答案:
一、1.b 2.a 3.d
二、1.x(x-5),(x-3)(2x-5) 2.x1= ,x2=1 3.(x+12)(x+8),x1=-12,x2=-8
三、1.
(1)3y(y-2)=0,y1=0,y0=2
(2)(5y)2-42=0 (5y+4)(5y-4)=0,y1=- ,y2=
(3)(x-14)(x+2)=0 x1=14,x2=-2
(4)(x-7)(x-5)=0 x1=7,x2=51234
2.x+y=0或x+y-1=0,即x+y=0或x+y=1
3.设宽为x,则长为35-2x,依题意,得x(35-2x)=150 2x2-35x+150=0 (2x-15)(x-10)=0, x1=7.5,x2=10,当宽x1=7.5时,长为35-2x=20,当宽x=10时,长为15,因a≥20m,两根都满足条件.1234
本文来源:https://jiaoan.jxxyjl.com/jiunianjishuxuejiaoan/38255.html
-
[大班数学教案位置关系]数学教案-两圆的位置关系详细阅读
课 题: 两圆的位置关系教学目的:掌握两圆的五种位置关系及判定方法;;教学重点:两圆的五种位置的判定.教学难点 :知识的综合运用.教学过程 :一,复习引入:请说出直线和圆的位置关系有哪几种?研究直线和圆的位置关系时,从两个角度来研究这种位置关系的,⑴直线和圆的公共点个数;⑵圆心到直线的距离d与半径...
-
数学教案模板小学_数学教案- 函数(二)详细阅读
课题 函数(二) 一、教学目的1.使学生理解自变量的取值范围和函数值的意义。2.使学生理解求自变量的取值范围的两个依据。3.使学生掌握关于解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并会求其函数值。4.通过求函数中自变量的取值范围使学生进一步理解函数概念。...
-
【数学教案圆柱体】数学教案-圆详细阅读
1、教材分析 (1)知识结构 (2)重点、难点分析 重点:①点和圆的三种位置关系,圆的有关概念,因为它们是研究圆的基础;②五种常见的点的轨迹,一是对几何图形的深刻理解,二为今后立体几何、解析几何的学习作重要的准备 难点:① 圆的集合定义,学生不容易理解为什么必须满足两个条件,内容本身属于难点;...
-
切线长定理|切线长定理详细阅读
1、教材分析 (1)知识结构 (2)重点、难点分析 重点:及其应用.因再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点. 难点:与有关的证明和计算问题.如120页练习题中第3题,它不仅应用,还用到解方程组的知识,是代数...
-
数学教案正方形_数学教案-正弦和余弦详细阅读
教学建议 1.知识结构:本小节主要学习正弦、余弦的概念,30、45、60角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等 2.重点、难点分析 (1) 正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三角学的...
-
小班三项大小比较数学教案_数学教案-二次三项式的因式分解(用公式法)详细阅读
一、教学目标 1.使学生理解二次三项式的意义;知道二次三项式的因式分解与一元二次方程的关系; 2.使学生会利用一元二次方程的求根公式在实数范围内将二次三项式分解因式; 3.通过二次三项式因式分解方法的推导,进一步启发学生学习的兴趣,提高他们研究问题的能力; 4.通过二次三项式因式分解方法的推导,进...
-
六年级上册数学教案圆|数学教案-两圆的公切线详细阅读
第一课时 两圆的公切线(一) 教学目标 : (1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法; (2)培养学生的归纳、总结能力; (3)通过两圆外公切线长的求法向学生渗透“转化”思想. 教学重点: 理解两圆相切长等有关概念,两圆外公切线的求法. 教学难点 : 两圆外公切线和两圆外公切线长学生...
-
[认识三角数学教案]数学教案-解直角三角形详细阅读
教学建议 1.知识结构: 本小节主要学习解直角三角形的概念,直角三角形中除直角外的五个元素之间的关系以及直角三角形的解法 2.重点和难点分析: 教学重点和难点:直角三角形的解法 本节的重点和难点是直角三角形的解法 为了使学生熟练掌握直角三角形的解法,首先要使学生知道什么叫做解直角三角形,直角三角...
-
【初三数学教案二次函数】数学教案-二次函数详细阅读
知识点〗二次函数、抛物线的顶点、对称轴和开口方向〖大纲要求〗1. 理解二次函数的概念;2. 会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;3. 会平移二次函数y=ax2(a≠0)的图象得到二次函数y=a(ax+m)2+k的图象,了解特殊与一般...
-
[大班数学教案平面位置对应]数学教案-平面直角坐标系详细阅读
1、教材分析: ⑴知识结构: 日常生活及其它学科需要一种确定平面内点的位置的方法 在数学上,可以类比数轴,引出平面直角坐标系的概念 完成了坐标平面内的点与有序实数对的一一对应,也把数与形统一了起来 ⑵重点、难点分析: 本节的重点是能正确画出直角坐标系,并能在直角坐标系中,根据坐标找出点,由点求出坐...